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Chapter 1

Multidimensional corners

Let 𝐺 be a finite abelian group whose size we will denote 𝑁 . Let 𝑑 ≥ 2 a natural number.

Definition 1.1 (Forgetting a coordinate). For an index 𝑖 ∶ [𝑑], we define

forget𝑖 ∶ 𝐺𝑑 → 𝐺{𝑗∶[𝑑]∣𝑗≠𝑖} (1.1)
𝑥 ↦ 𝑗 ↦ 𝑥𝑗 (1.2)

Definition 1.2 (Forbidden pattern). We say a tuple (𝑎1, … , 𝑎𝑑) ∶ (𝐺𝑑)𝑑 is a forbidden pattern
with tip 𝑣 ∶ 𝐺𝑑 if

𝑎𝑖,𝑗 = 𝑣𝑗

for all 𝑖, 𝑗 distinct. We also simply say (𝑎1, … , 𝑎𝑑) is a forbidden pattern if it is a forbidden
pattern with tip 𝑣 for some 𝑣.

Definition 1.3 (Multidimensional corner).
A multidimensional corner in 𝑑 dimensions is a tuple of the form (𝑥, 𝑥 + 𝑐𝑒1, … , 𝑥 + 𝑐𝑒𝑑)

for some 𝑥 ∶ 𝐺𝑑 and 𝑐 ∶ 𝐺, where 𝑐𝑒𝑖 is the vector of all zeroes except in position 𝑖 where it is 𝑐.
Such a corner is said to be trivial if 𝑐 = 0.

Definition 1.4 (Corner-free number).
The 𝑑-dimensional corner-free number of 𝐺, denoted 𝑟𝑑(𝐺) is the size of the largest set

𝐴 in 𝐺𝑑 such that 𝐴 doesn’t contain a non-trivial corner.

Definition 1.5 (Corner-coloring number).
The 𝑑-dimensional corner-coloring number of 𝐺, denoted 𝜒𝑑(𝐺), is the smallest number

of colors one needs to color 𝐺𝑑 such that no non-trivial 𝑑-dimensional corner is monochromatic.

Lemma 1.6 (Lower bound on the corner-coloring number).

𝑟𝑑(𝐺)𝜒𝑑(𝐺) ≥ 𝑁𝑑

Proof. Find a coloring of 𝐺𝑑 in 𝜒𝑑(𝐺) colors without non-trivial monochromatic 𝑑-dimensional
corners. The coloring partitions 𝐺𝑑 into 𝜒𝑑(𝐺) sets of size at most 𝑟𝑑(𝐺).
Lemma 1.7 (Upper bound on the corner-coloring number).

𝑟𝑑(𝐺)𝜒𝑑(𝐺) ≤ 2𝑑𝑁𝑑 log 𝑁

1



Proof. Find 𝐴 a corner-free set of density 𝛼 = 𝑟𝑑(𝐺)/𝑁𝑑. If we pick 𝑚 > 𝑑 log 𝑁/𝛼 translates
of 𝐴 randomly, then the expected number of elements not covered by any translate is

𝑁𝑑(1 − 𝛼)𝑚 ≤ exp(𝑑𝑁 − 𝑚𝛼) < 1

Namely, there is some collection of 𝑚 translates of 𝐴 that covers all of 𝐺𝑑. Since being corner-free
is translation-invariant, this cover by translates gives a coloring in 𝑚 colors without non-trivial
monochromatic corners. So

𝜒𝑑(𝐺) ≤ 𝑚 ≤ 2𝑑 log 𝑁/𝛼 = 2𝑑𝑁𝑑 log 𝑁/𝑟𝑑(𝐺)

if we set eg 𝑚 = ⌊𝑑 log 𝑁/𝛼⌋ + 1.
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Chapter 2

The NOF model

Let 𝐺 be a finite abelian group whose size we will denote 𝑑. Let 𝑑 ≥ 3 a natural number.

Definition 2.1 (NOF protocol). A NOF protocol 𝑃 consists of maps

strat ∶[𝑑] → 𝐺𝑑−1 → List Bool → Bool (2.1)
guess ∶[𝑑] → 𝐺𝑑−1 → List Bool → Bool (2.2)

We will not make 𝑃 part of any notation as it is usually fixed from the context.

Definition 2.2 (NOF broadcast).
Given a NOF protocol 𝑃 , the NOF broadcast on input 𝑥 ∶ 𝐺𝑑 is inductively defined by

broad(𝑥) ∶ ℕ → List Bool (2.3)
0 ↦ [] (2.4)

𝑡 + 1 ↦ strat𝑡%𝑑(forget𝑡%𝑑(𝑥), broad(𝑥, 𝑡)) ∶∶ broad(𝑥, 𝑡) (2.5)

Lemma 2.3 (Length of a broadcast). For every NOF protocol 𝑃 , every input 𝑥 ∶ 𝐺𝑑 and every
time 𝑡, broad(𝑥, 𝑡) has length 𝑡.
Proof. Induction on 𝑡.
Definition 2.4 (Valid NOF protocol).

Given a function 𝐹 ∶ 𝐺𝑑 → Bool, the NOF protocol 𝑃 is valid in 𝐹 at time 𝑡 on input 𝑥
if all participants correctly guess 𝐹(𝑥), namely if

guess𝑖(forget𝑖(𝑥), broad(𝑥, 𝑡)) = 𝐹(𝑥)

for all 𝑖 ∶ [𝑑].
Definition 2.5 (The trivial protocol).

For all 𝐹 , we define the trivial protocol by making participant 𝑖 do ”Send the 𝑡/𝑑-th bit
of the number of participant 𝑖 + 1” and ”Compute 𝑥𝑖 from the binary representation given by
participant 𝑖 − 1, then compute 𝐹(𝑥)”.
Lemma 2.6 (The trivial protocol is valid).

For all 𝐹 , the trivial protocol for 𝐹 is valid in time 𝑑 ⌈log2 𝑛⌉.

Proof. Obvious.
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Definition 2.7 (Deterministic complexity of a protocol).
The communication complexity of a NOF protocol 𝑃 for 𝐹 is the smallest time 𝑡 such

that 𝑃 is valid in 𝐹 at time 𝑡 on all inputs 𝑥, or ∞ if no such 𝑡 exists.

Definition 2.8 (Deterministic complexity of a function).
The deterministic communication complexity of a function 𝐹 , denoted 𝐷(𝐹), is the

minimum of the communication complexity of 𝑃 when 𝑃 ranges over all NOF protocols.

Lemma 2.9 (Trivial bound on the function complexity).
The communication complexity of any function 𝐹 is at most 𝑑 ⌈log2 𝑛⌉.

Proof.
The trivial protocol is a protocol valid in 𝐹 in time 𝑑 ⌈log2 𝑛⌉.

Lemma 2.10 (The tip of a monochromatic forbidden pattern).
Given 𝑃 a NOF protocol and a time 𝑡, if (𝑎1, … , 𝑎𝑑) is a forbidden pattern with tip 𝑣 such

that broad(𝑎𝑖, 𝑡) equals some fixed broadcast history 𝑏 for all 𝑖, then broad(𝑣, 𝑡) = 𝑏 as well.

Proof.
Induction on 𝑡. TODO: Expand
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Chapter 3

Lower bound on the
communication complexity of eval

Definition 3.1 (eval function). The eval function is defined by

eval ∶ 𝐺𝑑 → Bool (3.1)

𝑥 ↦ {1 if ∑𝑖 𝑥𝑖 = 0
0 else

(3.2)

Lemma 3.2 (Forbidden patterns project to multidimensional corners).
If (𝑎1, … , 𝑎𝑑) is a forbidden pattern such that eval(𝑎𝑖) = 1 for all 𝑖, then

(forget𝑖(𝑎1), … , forget𝑖(𝑎𝑑))
is a multidimensional corner for all index 𝑖.
Proof. Let 𝑣 be the tip of (𝑎1, … , 𝑎𝑑). Then, using that ∑𝑘 𝑎𝑗,𝑘 = 0 and 𝑣𝑘 = 𝑎𝑗,𝑘 for all 𝑘 ≠ 𝑗,
we see that 𝑣𝑗 = 𝑎𝑗,𝑗 + ∑𝑘 𝑣𝑘. This means that (forget𝑖(𝑎1), … , forget𝑖(𝑎𝑑) is a multidimensional
corner by setting 𝑥 = forget𝑖(𝑎𝑖) and 𝑐 = ∑𝑘 𝑣𝑘.

Lemma 3.3 (Monochromatic forbidden patterns are trivial).
Given 𝑃 a NOF protocol valid in time 𝑡 for eval, all monochromatic forbidden patterns are

trivial.

Proof.
Assume (𝑎1, … , 𝑎𝑑) is a monochromatic forbidden pattern with tip 𝑣, say broad(𝑎𝑖, 𝑡) = 𝑏 for

all 𝑖. By Lemma 2.10, we also have broad(𝑣, 𝑡) = 𝑏. Since 𝑃 is a valid NOF protocol for eval,
we get eval(𝑎𝑖) = eval(𝑣) for all 𝑖, meaning that (𝑎1, … , 𝑎𝑑) = (𝑣, … , 𝑣) is trivial.

Theorem 3.4 (Lower bound for 𝐷(eval) in terms of 𝜒𝑑(𝐺)).

𝐷(eval) ≥ ⌈log2 𝜒𝑑(𝐺)⌉
Proof.

Let 𝑃 be a protocol valid in time 𝑡 for eval. By Lemma 3.3, broad(⋅, 𝑡) is a coloring of
{𝑥 ∣ ∑𝑖 𝑥𝑖 = 0} in at most 2𝑡 colors (since 𝑡 bits were broadcasted) such that all monochromatic
forbidden patterns are trivial. By Lemma 3.2, this yields a coloring of 𝐺𝑑−1 in at most 2𝑡 colors
such all monochromatic corners are trivial. Hence 2𝑡 ≥ 𝜒𝑑(𝐺), as wanted.
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Corollary 3.5 (Lower bound for 𝐷(eval) in terms of 𝑟𝑑(𝐺)).

𝐷(eval) ≥ 𝑑 log2
𝑁

𝑟𝑑(𝐺)
Proof.

Putting Theorem 3.4 and Lemma 1.6 together, we get

𝐷(eval) ≥ ⌈log2
2𝑑𝑁𝑑 log 𝑁

𝑟𝑑(𝐺) ⌉ ≥ 𝑑 log2
𝑁

𝑟𝑑(𝐺)
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Chapter 4

Upper bound on the deterministic
communication complexity of eval

Definition 4.1 (The non-monochromatic protocol).
Given a coloring 𝑐 ∶ {𝑥 ∣ eval 𝑥 = 1} → [𝐶], writing 𝑎𝑖 the vector whose 𝑗-th coordinate is 𝑥𝑗

except when 𝑗 = 𝑖 in which case it is − ∑𝑗≠𝑖 𝑥𝑗, we define the non-monochromatic protocol
for 𝑐 by making participant 𝑖 do “Send the 𝑡/𝑑-th bit of 𝑐(𝑎𝑖) until time ⌈log2 𝜒𝑑(𝐺)⌉, then send
1 iff 𝑐(𝑎𝑖) agrees with the broadcast from time 1 to time ⌈log2 𝜒𝑑(𝐺)⌉ read as a color” and “Send
1 iff the broadcasts from time ⌈log2 𝜒𝑑(𝐺)⌉ to time ⌈log2 𝜒𝑑(𝐺)⌉ + 𝑑 were all 1”.

Lemma 4.2 (The non-monochromatic protocol is valid).
If 𝑐 is a coloring such that all monochromatic forbidden patterns are trivial, then the non-

monochromatic protocol for 𝑐 is valid in time ⌈log2 𝜒𝑑(𝐺)⌉ + 𝑑.

Proof. We have

answer is 1 ⟺ all 𝑎𝑖 have the same color ⟺ all 𝑎𝑖 are equal ⟺ ∑
𝑖

𝑥𝑖 = 0

where the first equivalence holds by definition, the second one holds by assumption and the third
one holds since the 𝑎𝑖 form a forbidden pattern.

Theorem 4.3 (Upper bound for 𝐷(eval) in terms of 𝜒𝑑(𝐺)).

𝐷(eval) ≤ ⌈log2 𝜒𝑑(𝐺)⌉ + 𝑑
Proof.

Using Lemma 3.2, find some coloring 𝑐 of {𝑥 ∣ ∑𝑖 𝑥𝑖 = 0} in 𝜒𝑑(𝐺) colors such that
all monochromatic forbidden patterns are trivial. Then Lemma 4.2 tells us that the non-
monochromatic protocol for 𝑐 is valid in time ⌈log2 𝜒𝑑(𝐺)⌉ + 𝑑.

Corollary 4.4 (Upper bound for 𝐷(eval) in terms of 𝑟𝑑(𝐺)).

𝐷(eval) ≤ 2𝑑 log2
𝑁

𝑟𝑑(𝐺)
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Proof.
Putting Theorem 4.3 and Lemma 1.7 together, we get

𝐷(eval) ≤ ⌈log2
2𝑑𝑁𝑑 log 𝑁

𝑟𝑑(𝐺) ⌉ ≤ 2𝑑 log2
𝑁

𝑟𝑑(𝐺)
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Chapter 5

Randomised complexity of eval

Definition 5.1 (Randomised complexity of a protocol).
The communication complexity of a randomised NOF protocol 𝑃 for 𝐹 with error

𝜖 is the smallest time 𝑡 such that

ℙ(𝑥 ∣ 𝑃 is not valid at time 𝑡) ≤ 𝜖

or ∞ if no such 𝑡 exists.

Definition 5.2 (Randomised complexity of a function).
The randomised communication complexity of a function 𝐹 with error 𝜖, denoted

𝑅𝜖(𝐹), is the minimum of the randomised communication complexity of 𝑃 when 𝑃 ranges over
all randomised NOF protocols.

Definition 5.3 (The randomised equality testing protocol for eval).
The randomised equality testing protocol for eval has domain Ω ∶= (Bool𝑑)⌈log2 𝜖−1⌉

with the uniform measure and is defined by making participant 𝑖 do “Compute

𝑎𝑖,𝑘 = ∑
𝑗≠𝑖

𝜔𝑗,𝑘𝑥𝑗

and send the sum of the digits of 𝑎𝑖,𝑡/𝑑 mod 2 at time 𝑡” and “Guess 1 iff the sum of the digits
of 𝜔𝑖𝑥𝑖 + what participant 𝑖 said is 0 modulo 2”.

Lemma 5.4 (The randomised equality testing protocol for eval is valid).
The randomised equality testing protocol is valid for eval at time 2𝑑.

Proof. If eval(𝑥) = 1, then the protocol guesses correctly. Else it errors with probability

2−⌈log2 𝜖−1⌉ ≤ 𝜖

Theorem 5.5 (The randomised complexity of eval is constant).

𝑅𝜖(eval) ≤ 2𝑑⌈log2 𝜖−1⌉
Proof.

By Lemma 5.4, the randomised equality testing protocol is valid for eval at time 2𝑑.

9


	Multidimensional corners
	The NOF model
	Lower bound on the communication complexity of eval
	Upper bound on the deterministic communication complexity of eval
	Randomised complexity of eval

