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Chapter 1

Multidimensional corners

Let G be a finite abelian group whose size we will denote V. Let d > 2 a natural number.

Definition 1.1 (Forgetting a coordinate). For an indez i : [d], we define

forget, : G4 — GUrldlli7?) (1.1)
T (1.2)

Definition 1.2 (Forbidden pattern). We say a tuple (aq, ...,a,) : (G?)? is a forbidden pattern
with tip v: G¢ if

@i =Y
for all i,j distinct. We also simply say (aq,...,a,) is a forbidden pattern if it is a forbidden
pattern with tip v for some v.

Definition 1.3 (Multidimensional corner).

A multidimensional corner in d dimensions is a tuple of the form (x,x + ceq,...,x + cey)
for some x : G and ¢ : G, where ce; is the vector of all zeroes except in position i where it is c.
Such a corner is said to be trivial if ¢ = 0.

Definition 1.4 (Corner-free number).
The d-dimensional corner-free number of G, denoted r,(G) is the size of the largest set
A in G such that A doesn’t contain a non-trivial corner.

Definition 1.5 (Corner-coloring number).
The d-dimensional corner-coloring number of G, denoted x;(G), is the smallest number
of colors one needs to color G such that no non-trivial d-dimensional corner is monochromatic.

Lemma 1.6 (Lower bound on the corner-coloring number).
ra(G)xqa(G) = N*

Proof. Find a coloring of G¢ in x,(G) colors without non-trivial monochromatic d-dimensional
corners. The coloring partitions G¢ into x,(G) sets of size at most r,(G). O

Lemma 1.7 (Upper bound on the corner-coloring number).

rqe(G)xqe(G) < 2dN¢ log N



Proof. Find A a corner-free set of density a = 7,(G)/N?. If we pick m > dlog N/a translates
of A randomly, then the expected number of elements not covered by any translate is

N1 —a)™ < exp(dN —ma) < 1

Namely, there is some collection of m translates of A that covers all of G?. Since being corner-free
is translation-invariant, this cover by translates gives a coloring in m colors without non-trivial
monochromatic corners. So

x4(G) <m < 2dlog N/a = 2dN%log N /r4(G)

if we set eg m = |dlog N /o] + 1. O



Chapter 2

The NOF model

Let G be a finite abelian group whose size we will denote d. Let d > 3 a natural number.
Definition 2.1 (NOF protocol). A NOF protocol P consists of maps
strat :[d] — G4t — List Bool — Bool (2.1)
guess :[d] — G971 — List Bool — Bool
We will not make P part of any notation as it is usually fixed from the context.

Definition 2.2 (NOF broadcast).
Given a NOF protocol P, the NOF broadcast on input z : G? is inductively defined by

broad(z) : N — List Bool (2.3)
0 ] (2.4)
t + 1 = strat,oq(forget,q, ,(x), broad(w,t)) :: broad(z,1) (2.5)

Lemma 2.3 (Length of a broadcast). For every NOF protocol P, every input x : G¢ and every
time t, broad(x,t) has length t.

Proof. Induction on t. O

Definition 2.4 (Valid NOF protocol).
Given a function F : G* — Bool, the NOF protocol P is valid in F at time t on input z
if all participants correctly guess F(x), namely if

guess, (forget, (x), broad(xz,t)) = F(x)
for alli: [d].

Definition 2.5 (The trivial protocol).

For all F, we define the trivial protocol by making participant i do ”Send the t/d-th bit
of the number of participant i + 1”7 and “Compute x; from the binary representation given by
participant i — 1, then compute F(x)”.

Lemma 2.6 (The trivial protocol is valid).
For all F, the trivial protocol for F is valid in time d [log,n].

Proof. Obvious. O



Definition 2.7 (Deterministic complexity of a protocol).
The communication complexity of a NOF protocol P for F is the smallest time t such
that P is valid in F at time t on all inputs x, or co if no such t exists.

Definition 2.8 (Deterministic complexity of a function).
The deterministic communication complexity of a function F, denoted D(F), is the
manimum of the communication complexity of P when P ranges over all NOF protocols.

Lemma 2.9 (Trivial bound on the function complexity).
The communication complexity of any function F is at most d ﬂog2 nl.

Proof.
The trivial protocol is a protocol valid in F' in time d ﬂog2 n-\ O

Lemma 2.10 (The tip of a monochromatic forbidden pattern).
Given P a NOF protocol and a time t, if (aq,...,a,) is a forbidden pattern with tip v such
that broad(a,,t) equals some fizved broadcast history b for all i, then broad(v,t) = b as well.

Proof.
Induction on t. TODO: Expand O



Chapter 3

Lower bound on the
communication complexity of eval

Definition 3.1 (eval function). The eval function is defined by

eval : G¢ — Bool (3.1)
s =0 (3.2)
0 else

Lemma 3.2 (Forbidden patterns project to multidimensional corners).
If (aq,...,a,) is a forbidden pattern such that eval(a;) =1 for all i, then

(forget,(ay), ..., forget,(a,))
is a multidimensional corner for all indez i.
Proof. Let v be the tip of (ay,...,a,). Then, using that }_, a; , =0 and v, = a; for all k # j,
we see that v; = a; ;+_, v,. This means that (forget,(a,), ..., forget,(a,) is a multidimensional
corner by setting x = forget,(a;) and c =, v. O
Lemma 3.3 (Monochromatic forbidden patterns are trivial).

Given P a NOF protocol valid in time t for eval, all monochromatic forbidden patterns are
trivial.

Proof.

Assume (aq, ..., a4) is a monochromatic forbidden pattern with tip v, say broad(a,,t) = b for
all i. By Lemma 2.10, we also have broad(v,t) = b. Since P is a valid NOF protocol for eval,
we get eval(a;) = eval(v) for all 4, meaning that (aq,...,a,) = (v, ..., v) is trivial. O

Theorem 3.4 (Lower bound for D(eval) in terms of x,(G)).

D(eval) > [log, x4(G)]

Proof.

Let P be a protocol valid in time ¢ for eval. By Lemma 3.3, broad(:,¢) is a coloring of
{z | >, z; = 0} in at most 2" colors (since t bits were broadcasted) such that all monochromatic
forbidden patterns are trivial. By Lemma 3.2, this yields a coloring of G%~! in at most 2¢ colors
such all monochromatic corners are trivial. Hence 2¢ > x,(G), as wanted. O



Corollary 3.5 (Lower bound for D(eval) in terms of r,;(G)).

N
D(eval) > dlog, ——~
r

a(G)
Proof.
Putting Theorem 3.4 and Lemma 1.6 together, we get
2dN%log N N
D(eval) > {log —‘ > dlog, ———
2 (@) 2 1ry(G)



Chapter 4

Upper bound on the deterministic
communication complexity of eval

Definition 4.1 (The non-monochromatic protocol).

Given a coloring ¢ : {z | evalz = 1} — [C], writing a; the vector whose j-th coordinate is x;
except when j =1 in which case it is — Z#i z;, we define the non-monochromatic protocol
for ¢ by making participant i do “Send the t/d-th bit of c(a;) until time [log, x4(G)], then send
L iff c(a;) agrees with the broadcast from time 1 to time [log, x4(G)] read as a color” and “Send

1 iff the broadcasts from time [log, x4(G)]| to time [log, x4(G)] + d were all 1.

Lemma 4.2 (The non-monochromatic protocol is valid).
If ¢ is a coloring such that all monochromatic forbidden patterns are trivial, then the non-
monochromatic protocol for c is valid in time [log, x4(G)] + d.

Proof. We have

answer is 1 <= all a; have the same color <= all a; are equal <= Zmi =0

2

where the first equivalence holds by definition, the second one holds by assumption and the third
one holds since the a; form a forbidden pattern. O

Theorem 4.3 (Upper bound for D(eval) in terms of x,(G)).

D(eval) < [log, x4(G)] +d

Proof.

Using Lemma 3.2, find some coloring ¢ of {z | > . x; = 0} in x4(G) colors such that
all monochromatic forbidden patterns are trivial. Then Lemma 4.2 tells us that the non-
monochromatic protocol for ¢ is valid in time [log, x4(G)] + d. O

Corollary 4.4 (Upper bound for D(eval) in terms of r,;(G)).

D(eval) < 2dlog, %
Td



Proof.
Putting Theorem 4.3 and Lemma 1.7 together, we get

2dN%log N

D(eval) < [log2 o (G)

N
[ =20
d



Chapter 5

Randomised complexity of eval

Definition 5.1 (Randomised complexity of a protocol).
The communication complexity of a randomised NOF protocol P for F' with error
€ is the smallest time t such that

P(x | P is not valid at time t) < €

or oo if no such t exists.

Definition 5.2 (Randomised complexity of a function).

The randomised communication complexity of a function F with error ¢, denoted
R_(F), is the minimum of the randomised communication complexity of P when P ranges over
all randomised NOF protocols.

Definition 5.3 (The randomised equality testing protocol for eval).

The randomised equality testing protocol for eval has domain  := (Boold)“OgZ <l
with the uniform measure and is defined by making participant i do “Compute

Gk = Z%‘,k%
i

and send the sum of the digits of a; ;)4 mod 2 at time t” and “Guess 1 iff the sum of the digits
of w;x; + what participant ¢ said is 0 modulo 2”.

Lemma 5.4 (The randomised equality testing protocol for eval is valid).
The randomised equality testing protocol is valid for eval at time 2d.

Proof. 1If eval(z) = 1, then the protocol guesses correctly. Else it errors with probability

9—Mlog, ™' < ¢
O
Theorem 5.5 (The randomised complexity of eval is constant).
R (eval) < 2d[log, e ']
Proof.
By Lemma 5.4, the randomised equality testing protocol is valid for eval at time 2d. O
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