Chandra-Furst-Lipton

Yaël Dillies

September 30, 2024

Multidimensional corners

Let G be a finite abelian group whose size we will denote N. Let $d > 2$ a natural number.

Definition 1.1 (Forgetting a coordinate). For an index $i : [d]$, we define

$$
\text{forget}_i: G^d \to G^{\{j:[d]|j \neq i\}} \tag{1.1}
$$

$$
x \mapsto j \mapsto x_j \tag{1.2}
$$

Definition 1.2 (Forbidden pattern). We say a tuple $(a_1, ..., a_d) : (G^d)^d$ is a **forbidden pattern** with tip $v: G^d$ *if*

$$
a_{i,j} = v_j
$$

 $for\ all\ i,j\ distinct.\ \ We\ also\ simply\ say\ (a_1,\ldots,a_d)\ is\ a\ forbidden\ pattern\ if\ it\ is\ a\ forbidden$ *pattern with tip* υ *for some* υ *.*

Definition 1.3 (Multidimensional corner)**.**

A **multidimensional corner** *in d* dimensions is a tuple of the form $(x, x + ce_1, ..., x + ce_d)$ f or some $x : G^d$ and $c : G$, where ce_i is the vector of all zeroes except in position i where it is c . *Such a corner is said to be trivial if* $c = 0$ *.*

Definition 1.4 (Corner-free number)**.**

The d-dimensional corner-free *number of* G , *denoted* $r_d(G)$ *is the size of the largest set* A in G^d such that A doesn't contain a non-trivial corner.

Definition 1.5 (Corner-coloring number)**.**

The d-dimensional corner-coloring number of *G*, denoted $\chi_d(G)$, is the smallest number of colors one needs to color G^d such that no non-trivial d-dimensional corner is monochromatic.

Lemma 1.6 (Lower bound on the corner-coloring number)**.**

$$
r_d(G)\chi_d(G)\geq N^d
$$

Proof. Find a coloring of G^d in $\chi_d(G)$ colors without non-trivial monochromatic d-dimensional corners. The coloring partitions G^d into $\chi_d(G)$ sets of size at most $r_d(G)$.

Lemma 1.7 (Upper bound on the corner-coloring number)**.**

$$
r_d(G)\chi_d(G)\leq 2dN^d\log N
$$

Proof. Find A a corner-free set of density $\alpha = r_d(G)/N^d$. If we pick $m > d \log N/\alpha$ translates of A randomly, then the expected number of elements not covered by any translate is

$$
N^d (1 - \alpha)^m \le \exp(dN - m\alpha) < 1
$$

Namely, there is some collection of m translates of A that covers all of G^d . Since being corner-free is translation-invariant, this cover by translates gives a coloring in m colors without non-trivial monochromatic corners. So

$$
\chi_d(G) \leq m \leq 2d\log N/\alpha = 2dN^d\log N/r_d(G)
$$

if we set eg $m = \lfloor d \log N/\alpha \rfloor + 1$.

The NOF model

Let G be a finite abelian group whose size we will denote d. Let $d > 3$ a natural number.

Definition 2.1 (NOF protocol)**.** *A* **NOF protocol** *consists of maps*

$$
strat: [d] \to G^{d-1} \to List \, \text{Bool} \to \text{Bool} \tag{2.1}
$$

$$
guess : [d] \to G^{d-1} \to List \, \text{Bool} \to \text{Bool} \tag{2.2}
$$

We will not make P part of any notation as it is usually fixed from the context.

Definition 2.2 (NOF broadcast)**.**

Given a NOF protocol P, the **NOF broadcast on input** $x : G^d$ *is inductively defined by*

$$
broad(x): \mathbb{N} \to \text{List} \, \text{Bool} \tag{2.3}
$$

$$
0 \mapsto [] \tag{2.4}
$$

$$
t+1 \mapsto \mathrm{strat}_{t\%d}(\mathrm{forget}_{t\%d}(x),\mathrm{broad}(x,t))::\mathrm{broad}(x,t) \tag{2.5}
$$

Lemma 2.3 (Length of a broadcast). For every NOF protocol P, every input $x : G^d$ and every *time t*, broad (x, t) *has length t*.

Proof. Induction on t.

Definition 2.4 (Valid NOF protocol)**.**

Given a function $F: G^d \to \text{Bool}$ *, the NOF protocol* P *is* **valid in** F at time t on input x *if all participants correctly guess* $F(x)$ *, namely if*

$$
\mathrm{guess}_i(\mathrm{forget}_i(x),\mathrm{broad}(x,t)) = F(x)
$$

for all $i : [d]$ *.*

Definition 2.5 (The trivial protocol)**.**

For all F, we define the **trivial protocol** by making participant *i* do "Send the t/d-th bit *of the number of participant* $i + 1$ " *and* "Compute x_i from the binary representation given by *participant* $i - 1$ *, then compute* $F(x)$ *".*

Lemma 2.6 (The trivial protocol is valid)**.**

For all F, the trivial protocol for F is valid in time $d \lceil \log_2 n \rceil$.

Proof. Obvious.

 \Box

Definition 2.7 (Deterministic complexity of a protocol)**.**

The **communication complexity of a NOF protocol for** *is the smallest time such that* P *is valid in* F *at time* t *on all inputs* x *, or* ∞ *if no such* t *exists.*

Definition 2.8 (Deterministic complexity of a function)**.**

The **deterministic communication complexity of a function** F , denoted $D(F)$, is the *minimum of the communication complexity of* P *when* P *ranges over all NOF protocols.*

Lemma 2.9 (Trivial bound on the function complexity)**.**

The communication complexity of any function F is at most $d \lceil \log_2 n \rceil$.

Proof.

The trivial protocol is a protocol valid in F in time $d \lceil \log_2 n \rceil$.

Lemma 2.10 (The tip of a monochromatic forbidden pattern)**.**

Given P a NOF protocol and a time t , if (a_1, \ldots, a_d) is a forbidden pattern with tip v such *that* broad (a_i, t) *equals some fixed broadcast history b for all i*, *then* broad $(v, t) = b$ *as well.*

Proof.

Induction on t . TODO: Expand

 \Box

Lower bound on the communication complexity of eval

Definition 3.1 (eval function)**.** *The* eval **function** *is defined by*

$$
eval: G^d \to \text{Bool} \tag{3.1}
$$

$$
x \mapsto \begin{cases} 1 & \text{if } \sum_{i} x_i = 0 \\ 0 & \text{else} \end{cases}
$$
 (3.2)

Lemma 3.2 (Forbidden patterns project to multidimensional corners)**.**

If (a_1, \ldots, a_d) *is a forbidden pattern such that* $eval(a_i) = 1$ *for all i, then*

 $(\mathrm{forget}_i(a_1), \ldots, \mathrm{forget}_i(a_d))$

is a multidimensional corner for all index .

Proof. Let v be the tip of (a_1, \ldots, a_d) . Then, using that $\sum_k a_{j,k} = 0$ and $v_k = a_{j,k}$ for all $k \neq j$, we see that $v_j = a_{j,j} + \sum_k v_k$. This means that $(\text{forget}_i(a_1), \dots, \text{forget}_i(a_d))$ is a multidimensional corner by setting $x = \text{forget}_i(a_i)$ and $c = \sum_k v_k$. \Box

Lemma 3.3 (Monochromatic forbidden patterns are trivial)**.**

Given a NOF protocol valid in time for eval*, all monochromatic forbidden patterns are trivial.*

Proof.

Assume (a_1, \ldots, a_d) is a monochromatic forbidden pattern with tip v, say broad $(a_i, t) = b$ for all *i*. By Lemma 2.10, we also have broad $(v, t) = b$. Since P is a valid NOF protocol for eval, we get $eval(a_i) = eval(v)$ for all i, meaning that $(a_1, ..., a_d) = (v, ..., v)$ is trivial. \Box

Theorem 3.4 (Lower bound for $D(\text{eval})$ in terms of $\chi_d(G)$).

$$
D(\text{eval}) \geq \lceil \log_2 \chi_d(G) \rceil
$$

Proof.

Let P be a protocol valid in time t for eval. By Lemma 3.3, broad (\cdot, t) is a coloring of $\{x \mid \sum_i x_i = 0\}$ in at most 2^t colors (since t bits were broadcasted) such that all monochromatic forbidden patterns are trivial. By Lemma 3.2, this yields a coloring of G^{d-1} in at most 2^t colors such all monochromatic corners are trivial. Hence $2^t \geq \chi_d(G)$, a[s w](#page-5-0)anted. \Box **Corollary 3.5** (Lower bound for D (eval) in terms of $r_d(G)$).

$$
D(\text{eval}) \geq d\log_2\frac{N}{r_d(G)}
$$

Proof.

Putting Theorem 3.4 and Lemma 1.6 together, we get

$$
D(\text{eval}) \geq \left\lceil \log_2 \frac{2dN^d \log N}{r_d(G)} \right\rceil \geq d \log_2 \frac{N}{r_d(G)}
$$

Upper bound on the deterministic communication complexity of eval

Definition 4.1 (The non-monochromatic protocol)**.**

Given a coloring $c: \{x \mid \text{eval } x = 1\} \rightarrow [C]$, writing a_i the vector whose j-th coordinate is x_j *except when* $j = i$ in which case it is $-\sum_{j \neq i} x_j$, we define the **non-monochromatic protocol for** c by making participant i do "Send the t/d -th bit of $c(a_i)$ until time $\lceil \log_2 \chi_d(G) \rceil$, then send 1 *iff* $c(a_i)$ agrees with the broadcast from time 1 to time $\lceil \log_2 \chi_d(G) \rceil$ read as a color" and "Send 1 iff the broadcasts from time $\lceil \log_2 \chi_d(G) \rceil$ to time $\lceil \log_2 \chi_d(G) \rceil + d$ were all 1".

Lemma 4.2 (The non-monochromatic protocol is valid)**.**

If c is a coloring such that all monochromatic forbidden patterns are trivial, then the nonmonochromatic protocol for c is valid in time $\lceil \log_2 \chi_d(G) \rceil + d$.

Proof. We have

answer is 1 \iff all a_i have the same color \iff all a_i are equal $\iff \sum$ \dot{i} $x_i = 0$

where the first equivalence holds by definition, the second one holds by assumption and the third one holds since the a_i form a forbidden pattern. П

Theorem 4.3 (Upper bound for $D(\text{eval})$ in terms of $\chi_d(G)$).

$$
D(\text{eval}) \leq \lceil \log_2 \chi_d(G) \rceil + d
$$

Proof.

Using Lemma 3.2, find some coloring c of $\{x \mid \sum_i x_i = 0\}$ in $\chi_d(G)$ colors such that all monochromatic forbidden patterns are trivial. Then Lemma 4.2 tells us that the nonmonochromatic protocol for c is valid in time $\lceil \log_2 \chi_d(G) \rceil + d$. \Box

Corollary 4.4 (U[ppe](#page-5-1)r bound for D (eval) in terms of $r_d(G)$).

$$
D(\text{eval}) \leq 2d\log_2\frac{N}{r_d(G)}
$$

Proof.

Putting Theorem 4.3 and Lemma 1.7 together, we get

$$
D(\mathrm{eval}) \leq \left\lceil \log_2 \frac{2dN^d \log N}{r_d(G)} \right\rceil \leq 2d \log_2 \frac{N}{r_d(G)}
$$

Randomised complexity of eval

Definition 5.1 (Randomised complexity of a protocol)**.**

The **communication complexity of a randomised NOF protocol for with error** *is the smallest time such that*

 $\mathbb{P}(x \mid P \text{ is not valid at time } t) \leq \epsilon$

 $or \infty$ *if no such t exists.*

Definition 5.2 (Randomised complexity of a function)**.**

The **randomised communication complexity of a function** F with error ϵ , denoted $R_{\epsilon}(F)$, is the minimum of the randomised communication complexity of P when P ranges over *all randomised NOF protocols.*

Definition 5.3 (The randomised equality testing protocol for eval)**.**

The **randomised equality testing protocol for** eval *has domain* $\Omega := (\text{Bool}^d)^{\lceil \log_2 e^{-1} \rceil}$ *with the uniform measure and is defined by making participant do "Compute*

$$
a_{i,k}=\sum_{j\neq i}\omega_{j,k}x_j
$$

and send the sum of the digits of $a_{i, t/d}$ mod 2 at time t" and "Guess 1 iff the sum of the digits *of* $\omega_i x_i$ + what participant *i* said is 0 *modulo* 2".

Lemma 5.4 (The randomised equality testing protocol for eval is valid)**.**

The randomised equality testing protocol is valid for eval *at time* 2*.*

Proof. If $eval(x) = 1$, then the protocol guesses correctly. Else it errors with probability

$$
2^{-\lceil \log_2 \epsilon^{-1} \rceil} \leq \epsilon
$$

Theorem 5.5 (The randomised complexity of eval is constant)**.**

$$
R_\epsilon(\text{eval}) \leq 2d\lceil\log_2 \epsilon^{-1}\rceil
$$

Proof.

By Lemma 5.4, the randomised equality testing protocol is valid for eval at time $2d$. \Box