## LeanAPAP

Thomas Bloom, Yaël Dillies
May 2, 2024

## Chapter 1

## Almost-Periodicity

Lemma 1.1 (Marcinkiewicz-Zygmund inequality). Let $m \geq 1$. If $f: G \rightarrow \mathbb{R}$ is such that $\mathbb{E}_{x} f(x)=0$ and $|f(x)| \leq 2$ for all $x$ then

$$
\mathbb{E}_{x_{1}, \ldots, x_{n}}\left|\sum_{i=1}^{n} f\left(x_{i}\right)\right|^{2 m} \leq(4 m n)^{m}
$$

Proof. Let $S$ be the left-hand side. Since $0=\mathbb{E}_{y} f(y)$ we have, by the triangle inequality, and Hölder's inequality,

$$
S=\mathbb{E}_{x_{1}, \ldots, x_{n}}\left|\sum_{i} f\left(x_{i}\right)-\mathbb{E}_{y_{i}} f\left(y_{i}\right)\right|^{2 m}=\mathbb{E}_{x_{1}, \ldots, x_{n}}\left|\mathbb{E}_{y_{i}}\left(\sum_{i} f\left(x_{i}\right)-f\left(y_{i}\right)\right)\right|^{2 m} \leq \mathbb{E}_{x_{1}, \ldots, y_{n}}\left|\sum_{i} f\left(x_{i}\right)-f\left(y_{i}\right)\right|^{2 m} .
$$

Changing the role of $x_{i}$ and $y_{i}$ makes no difference here, but multiplies the $i$ summand by $\{-1,+1\}$, and therefore for any $\epsilon_{i} \in\{-1,+1\}$,

$$
S \leq \mathbb{E}_{x_{1}, \ldots, y_{n}}\left|\sum_{i} \epsilon_{i}\left(f\left(x_{i}\right)-f\left(y_{i}\right)\right)\right|^{2 m}
$$

In particular, if we sample $\epsilon_{i} \in\{-1,+1\}$ uniformly at random, then

$$
S \leq \mathbb{E}_{\epsilon_{i}} \mathbb{E}_{x_{1}, \ldots, y_{n}}\left|\sum_{i} \epsilon_{i}\left(f\left(x_{i}\right)-f\left(y_{i}\right)\right)\right|^{2 m}
$$

We now change the order of expectation and consider the expectation over just $\epsilon_{i}$, viewing the $f\left(x_{i}\right)-f\left(y_{i}\right)=z_{i}$, say, as fixed quantities. For any $z_{i}$ we can expand $\mathbb{E}_{\epsilon_{i}}\left|\sum_{i} \epsilon_{i} z_{i}\right|^{2 m}$ and then bound it from above, using the triangle inequality and $\left|z_{i}\right| \leq 4$, by

$$
4^{2 m} \sum_{k_{1}+\cdots+k_{n}=2 m}\binom{2 m}{k_{1}, \ldots, k_{n}}\left|\mathbb{E} \epsilon_{1}^{k_{1}} \cdots \epsilon_{n}^{k_{n}}\right| .
$$

The inner expectation vanishes unless each $k_{i}$ is even, when it is trivially one. Therefore the above quantity is exactly

$$
\sum_{l_{1}+\cdots+l_{n}=m}\binom{2 m}{2 l_{1}, \ldots, 2 l_{n}} \leq m^{m} n^{m}
$$

since for any $l_{1}+\cdots+l_{n}=m$,

$$
\binom{2 m}{2 l_{1}, \ldots, 2 l_{n}} \leq m^{m}\binom{m}{l_{1}, \ldots, l_{n}}
$$

This can be seen, for example, by writing both sides out using factorials, yielding

$$
\frac{(2 m)!}{\left(2 l_{1}\right)!\cdots\left(2 l_{n}\right)!} \leq \frac{(2 m)!}{2^{m} m!} \frac{m!}{l_{1}!\cdots l_{n}!} \leq m^{m} \frac{m!}{l_{1}!\cdots l_{n}!}
$$

Lemma 1.2 (Complex-valued Marcinkiewicz-Zygmund inequality). Let $m \geq 1$. If $f: G \rightarrow$ $\mathbb{C}$ is such that $\mathbb{E}_{x} f(x)=0$ and $|f(x)| \leq 2$ for all $x$ then

$$
\mathbb{E}_{x_{1}, \ldots, x_{n}}\left|\sum_{i=1}^{n} f\left(x_{i}\right)\right|^{2 m} \leq(16 m n)^{m}
$$

Proof. Test.
Lemma 1.3. Let $\epsilon>0$ and $m \geq 1$. Let $A \subseteq G$ and $f: G \rightarrow \mathbb{C}$. If $k \geq 64 m \epsilon^{-2}$ then the set

$$
L=\left\{\vec{a} \in A^{k}:\left\|\frac{1}{k} \sum_{i=1}^{k} f\left(x-a_{i}\right)-\mu_{A} * f\right\|_{2 m} \leq \epsilon\|f\|_{2 m}\right\} .
$$

has size at least $|A|^{k} / 2$.
Proof. Note that if $a \in A$ is chosen uniformly at random then, for any fixed $x \in G$,

$$
\mathbb{E} f\left(x-a_{i}\right)=\frac{1}{|A|} \sum_{a \in A} f(x-a)=\frac{1}{|A|} 1_{A} * f(x)=\mu_{A} * f(x)
$$

Therefore, if we choose $a_{1}, \ldots, a_{k} \in A$ independently uniformly at random, for any fixed $x \in G$ and $1 \leq i \leq k$, the random variable $f\left(x-a_{i}\right)-f * \mu_{A}(x)$ has mean zero. By the Marcinkiewicz-Zygmund inequality Lemma 1.1, therefore,

$$
\mathbb{E}\left|\frac{1}{k} \sum_{i} f\left(x-a_{i}\right)-f * \mu_{A}(x)\right|^{2 m} \leq
$$

We now sum both sides over all $x \in G$. By the triangle inequality, for any fixed $1 \leq i \leq k$ and $a_{i} \in A$,

$$
\begin{aligned}
\sum_{x \in G}\left|f\left(x-a_{i}\right)-f * \mu_{A}(x)\right|^{2 m} & \leq 2^{2 m-1} \sum_{x \in G}\left|f\left(x-a_{i}\right)\right|^{2 m}+\sum_{x \in G}\left|f * \mu_{A}(x)\right|^{2 m} \\
& \leq 2^{2 m-1}\left(\|f\|_{2 m}^{2 m}+\left\|f * \mu_{A}\right\|_{2 m}^{2 m}\right)
\end{aligned}
$$

We note that $\left\|\mu_{A}\right\|_{1}=\frac{1}{|A|} \sum_{x \in A} 1_{A}(x)=|A| /|A|=1$, and hence by Young's inequality, $\left\|f * \mu_{A}\right\|_{2 m} \leq\|f\|_{2 m}$, and so

$$
\sum_{x \in G}\left|f\left(x-a_{i}\right)-f * \mu_{A}(x)\right|^{2 m} \leq 2^{2 m}\|f\|_{2 m}^{2 m}
$$

It follows that

$$
\mathbb{E}_{a_{1}, \ldots, a_{k} \in A}\left\|\frac{1}{k} \sum_{i} \tau_{a_{i}} f-f * \mu_{A}\right\|_{2 m}^{2 m} \leq(64 m / k)^{m}\|f\|_{2 m}^{2 m}
$$

In particular, if $k \geq 64 \epsilon^{-2} m$ then the right-hand side is at most $\left(\frac{\epsilon}{2}\|f\|_{2 m}\right)^{2 m}$ as required.
Lemma 1.4. Let $A \subseteq G$ and $f: G \rightarrow \mathbb{C}$. Let $\epsilon>0$ and $m \geq 1$ and $k \geq 1$. Let

$$
L=\left\{\vec{a} \in A^{k}:\left\|\frac{1}{k} \sum_{i=1}^{k} f\left(x-a_{i}\right)-\mu_{A} * f\right\|_{2 m} \leq \epsilon\|f\|_{2 m}\right\} .
$$

If $t \in G$ is such that $\vec{a} \in L$ and $\vec{a}+(t, \ldots, t) \in L$ then

$$
\left\|\tau_{t}\left(\mu_{A} * f\right)-\mu_{A} * f\right\|_{2 m} \leq 2 \epsilon\|f\|_{2 m}
$$

Proof. Test.
Lemma 1.5. Let $A \subseteq G$ and $k \geq 1$ and $L \subseteq A^{k}$. Then there exists some $\vec{a} \in L$ such that

$$
\#\{t \in G: \vec{a}+(t, \ldots, t) \in L\} \geq \frac{|L|}{|A+S|^{k}}|S|
$$

Proof. Test.
Theorem 1.6 ( $L_{p}$ almost periodicity). Let $\epsilon \in(0,1]$ and $m \geq 1$. Let $K \geq 2$ and $A, S \subseteq G$ with $|A+S| \leq K|A|$. Let $f: G \rightarrow \mathbb{C}$. There exists $T \subseteq G$ such that

$$
|T| \geq K^{-512 m \epsilon^{-2}}|S|
$$

such that for any $t \in T$ we have

$$
\left\|\tau_{t}\left(\mu_{A} * f\right)-\mu_{A} * f\right\|_{2 m} \leq \epsilon\|f\|_{2 m}
$$

Proof. Test.
Theorem 1.7 ( $L_{\infty}$ almost periodicity). Let $\epsilon \in(0,1]$. Let $K \geq 2$ and $A, S \subseteq G$ with $|A+S| \leq K|A|$. Let $B, C \subseteq G$. Let $\eta=\min (1,|C| /|B|)$. There exists $T \subseteq G$ such that

$$
|T| \geq K^{-4096[\mathcal{L} \eta] \epsilon^{-2}}|S|
$$

such that for any $t \in T$ we have

$$
\left\|\tau_{t}\left(\mu_{A} * 1_{B} * \mu_{C}\right)-\mu_{A} * 1_{B} * \mu_{C}\right\|_{\infty} \leq \epsilon
$$

Proof. Let $T$ be as given in 1.6 with $f=1_{B}$ and $m=\lceil\mathcal{L} \eta\rceil$ and $\epsilon=\epsilon / e$. (The size bound on $T$ follows since $e^{2} \leq 8$.) Fix $t \in T$ and let $F=\tau_{t}\left(\mu_{A} * 1_{B}\right)-\mu_{A} * 1_{B}$. We have, for any $x \in G$,
$\left(\tau_{t}\left(\mu_{A} * 1_{B} * \mu_{C}\right)-\mu_{A} * 1_{B} * \mu_{C}\right)(x)=F * \mu_{C}(x)=\sum_{y} F(y) \mu_{C}(x-y)=\sum_{y} F(y) \mu_{x-C}(y)$.
By Hölder's inequality, this is (in absolute value), for any $m \geq 1$,

$$
\|F\|_{2 m}\left\|\mu_{x-C}\right\|_{1+\frac{1}{2 m-1}} .
$$

By the construction of $T$ the first factor is at most $\frac{\epsilon}{e}\left\|1_{B}\right\|_{2 m}=\frac{\epsilon}{e}|B|^{1 / 2 m}$. We have by calculation

$$
\left\|\mu_{x-C}\right\|_{1+\frac{1}{2 m-1}}=|x-C|^{-1 / 2 m}=|C|^{-1 / 2 m}
$$

Therefore we have shown that

$$
\left\|\tau_{t}\left(\mu_{A} * 1_{B} * \mu_{C}\right)-\mu_{A} * 1_{B} * \mu_{C}\right\|_{\infty} \leq \frac{\epsilon}{e}(|C| /|B|)^{-1 / 2 m}
$$

The claim now follows since, by choice of $m$,

$$
(|C| /|B|)^{-1 / 2 m} \leq e
$$

(dividing into cases as to whether $\eta=1$ or not).
Theorem 1.8. Let $\epsilon \in(0,1]$ and $k \geq 1$. Let $K \geq 2$ and $A, S \subseteq G$ with $|A+S| \leq K|A|$. Let $B, C \subseteq G$. Let $\eta=\min (1,|C| /|B|)$. There exists $T \subseteq G$ such that

$$
|T| \geq K^{-4096\lceil\mathcal{L} \eta\rceil k^{2} \epsilon^{-2}}|S|
$$

such that

$$
\left\|\mu_{T}^{(k)} * \mu_{A} * 1_{B} * \mu_{C}-\mu_{A} * 1_{B} * \mu_{C}\right\|_{\infty} \leq \epsilon
$$

Proof. Let $T$ be as in Theorem 1.7 with $\epsilon$ replaced by $\epsilon / k$. Note that, for any $x \in G$,

$$
\mu_{T}^{(k)} * \mu_{A} * 1_{B} * \mu_{C}(x)=\frac{1}{|T|^{k}} \sum_{t_{1}, \ldots, t_{k} \in T} \tau_{t_{1}+\cdots+t_{k}} \mu_{A} * 1_{B} * \mu_{C}(x)
$$

It therefore suffices (by the triangle inequality) to show, for any fixed $x \in G$ and $t_{1}, \ldots, t_{k} \in T$, that with $F=\mu_{A} * 1_{B} * \mu_{C}$, we have

$$
\left|\tau_{t_{1}+\cdots+t_{k}} F(x)-F(x)\right| \leq \epsilon .
$$

This follows by the triangle inequality applied $k$ times if we knew that, for $1 \leq l \leq k$,

$$
\left|\tau_{t_{1}+\cdots+t_{l}} F(x)-\tau_{t_{1}+\cdots+t_{l-1}} F(x)\right| \leq \epsilon / k .
$$

We can write the left-hand side as
$\left|\tau_{t_{1}+\cdots+t_{l}} F(x)-\tau_{t_{1}+\cdots+t_{l-1}} F(x)\right|=\left|\tau_{t_{l}} F\left(x-t_{1}-\cdots-t-l-1\right)-F\left(x-t_{1}-\cdots-t-l-1\right)\right|$.
The right-hand side is at most

$$
\left\|\tau_{t_{l}} F-F\right\|_{\infty}
$$

and we are done by choice of $T$.

## Chapter 2

## Chang's lemma

Definition 2.1 (Dissociation). We say that $A \subseteq G$ is dissociated if, for any $m \geq 1$, and any $x \in G$, there is at most one $A^{\prime} \subset A$ of size $\left|A^{\prime}\right|=m$ such that

$$
\sum_{a \in A^{\prime}} a=x
$$

Lemma 2.2 (Rudin's exponential inequality). If the discrete Fourier transform of $f: G \longrightarrow$ $\mathbb{C}$ has dissociated support, then

$$
\mathbb{E} \exp (\Re f) \leq \exp \left(\frac{\|f\|_{2}^{2}}{2}\right)
$$

It follows that

$$
\mathbb{E}_{x} e^{|f(x)|} \leq 2 e^{\|f\|_{2}^{2} / 2} .
$$

Proof. Using the convexity of $t \mapsto e^{t x}$ (for all $x \geq 0$ and $t \in[-1,1]$ ) we have

$$
e^{t x} \leq \cosh (x)+t \sinh (x)
$$

It follows (taking $x=|z|$ and $t=\mathfrak{R}(z) /|z|)$ that, for any $z \in \mathbb{C}$,

$$
e^{\Re z} \leq \cosh |z|+\Re(z /|z|) \sinh |z| .
$$

In particular, if $c_{\gamma} \in \mathbb{C}$ with $\left|c_{\gamma}\right|=1$ is such that $\hat{f}(\gamma)=c_{\gamma}|\hat{f}(\gamma)|$, then

$$
\begin{aligned}
e^{\Re f(x)} & =\exp \left(\mathfrak{R} \sum_{\gamma \in \Gamma} \hat{f}(\gamma) \gamma(x)\right) \\
& =\prod_{\gamma \in \Gamma} \exp (\mathfrak{R} \hat{f}(\gamma) \gamma(x)) \\
& \leq \prod_{\gamma \in \Gamma}\left(\cosh |\hat{f}(\gamma)|+\Re c_{\gamma} \gamma(x) \sinh |\hat{f}(\gamma)|\right) .
\end{aligned}
$$

Therefore

$$
\mathbb{E}_{x} e^{\Re f(x)} \leq \mathbb{E}_{x} \prod_{\gamma \in \Gamma}\left(\cosh |\hat{f}(\gamma)|+\Re c_{\gamma} \gamma(x) \sinh |\hat{f}(\gamma)|\right) .
$$



$$
\prod_{\gamma \in \Gamma_{2}} \frac{c_{\gamma}}{2} \prod_{\gamma \in \Gamma_{3}} \frac{\overline{c_{\gamma}}}{2}\left(\prod_{\gamma \in \Gamma_{1}} \cosh |\hat{f}(\gamma)|\right)\left(\prod_{\gamma \in \Gamma_{2} \cup \Gamma_{3}} \sinh |\hat{f}(\gamma)|\right)\left(\sum_{\gamma \in \Gamma_{2}} \gamma-\sum_{\lambda \in \Gamma_{3}} \lambda\right)(x)
$$

as $\Gamma_{1} \sqcup \Gamma_{2} \sqcup \Gamma_{3}=\Gamma$ ranges over all partitions of $\Gamma$ into three disjoint parts. Using the definition of dissociativity we see that

$$
\sum_{\gamma \in \Gamma_{2}} \gamma-\sum_{\lambda \in \Gamma_{3}} \lambda \neq 0
$$

unless $\Gamma_{2}=\Gamma_{3}=\varnothing$. In particular summing this term over all $x \in G$ gives 0 . Therefore the only term that survives averaging over $x$ is when $\Gamma_{1}=\Gamma$, and so

$$
\mathbb{E}_{x} e^{\Re f(x)} \leq \prod_{\gamma \in \Gamma} \cosh |\hat{f}(\gamma)| .
$$

The conclusion now follows using $\cosh (x) \leq e^{x^{2} / 2}$ and $\sum_{\gamma \in \Gamma}|\hat{f}(\gamma)|^{2}=\|f\|_{2}^{2}$. The second conclusion follows by applying it to $f(x)$ and $-f(x)$ and using

$$
e^{|y|} \leq e^{y}+e^{-y}
$$

Lemma 2.3 (Rudin's inequality). If the discrete Fourier transform of $f: G \longrightarrow \mathbb{C}$ has dissociated support and $p \geq 2$ is an integer, then $\|f\|_{p} \leq 4 \sqrt{p e}\|f\|_{2}$.
Proof. It is enough to show that $\|\Re f\|_{p} \leq 2 \sqrt{p e}\|f\|_{2}$ as then

$$
\|f\|_{p} \leq\|\Re f\|_{p}+\|i \Im f\|_{p}=\|\Re f\|_{p}+\|\mathfrak{R}(-i f)\|_{p} \leq 4 \sqrt{p e}\|f\|_{2}
$$

If $f=0$, the result is obvious. So assume $f \neq 0 .\|f\|_{2}>0$, so WLOG $\|f\|_{2}=\sqrt{p}$.
Rudin's exponential inequality for $f$ becomes $\mathbb{E} \exp |\Re f| \leq 2 \exp \left(\frac{p}{2}\right)=(2 \sqrt{e})^{p}$. Using $\frac{x^{p}}{p!} \leq e^{x}$ for positive $x$, we get

$$
\frac{\|\mathfrak{R} f\|_{p}^{p}}{p^{p}} \leq \frac{\|\mathfrak{R} f\|_{p}^{p}}{p!}=\mathbb{E} \frac{|\mathfrak{R} f|^{p}}{p!} \leq \mathbb{E} \exp |\mathfrak{R} f|
$$

Rearranging, $\|\mathfrak{R} f\|_{p} \leq 2 p \sqrt{e}=2 \sqrt{p e}\|f\|_{2}$.
Definition 2.4 (Large spectrum). Let $G$ be a finite abelian group and $f: G \rightarrow \mathbb{C}$. Let $\eta \in \mathbb{R}$. The $\eta$-large spectrum is defined to be

$$
\Delta_{\eta}(f)=\left\{\gamma \in \widehat{G}:|\hat{f}(\gamma)| \geq \eta\|f\|_{1}\right\}
$$

Definition 2.5 (Weighted energy). Let $\Delta \subseteq \widehat{G}$ and $m \geq 1$. Let $\nu: G \rightarrow \mathbb{C}$. Then

$$
E_{2 m}(\Delta ; \nu)=\sum_{\gamma_{1}, \ldots, \gamma_{2 m} \in \Delta}\left|\hat{\nu}\left(\gamma_{1}+\cdots-\gamma_{2 m}\right)\right| .
$$

Definition 2.6 (Energy). Let $G$ be a finite abelian group and $A \subseteq G$. Let $m \geq 1$. We define

$$
E_{2 m}(A)=\sum_{a_{1}, \ldots, a_{2 m} \in A} 1_{a_{1}+\cdots-a_{2 m}=0}
$$

Lemma 2.7. Let $G$ be a finite abelian group and $f: G \rightarrow \mathbb{C}$. Let $\nu: G \rightarrow \mathbb{R}_{\geq 0}$ be such that whenever $|f| \neq 0$ we have $\nu \geq 1$. Let $\Delta \subseteq \Delta_{\eta}(f)$. Then, for any $m \geq 1$.

$$
\eta^{2 m} \frac{\|f\|_{1}^{2}}{\|f\|_{2}^{2}}|\Delta|^{2 m} \leq E_{2 m}(\Delta ; \nu)
$$

Proof. By definition of $\Delta_{\eta}(f)$ we know that

$$
\eta\|f\|_{1}|\Delta| \leq \sum_{\gamma \in \Delta}|\hat{f}(\gamma)|
$$

There exists some $c_{\gamma} \in \mathbb{C}$ with $\left|c_{\gamma}\right|=1$ for all $\gamma$ such that

$$
|\hat{f}(\gamma)|=c_{\gamma} \hat{f}(\gamma)=c_{\gamma} \sum_{x \in G} f(x) \overline{\gamma(x)}
$$

Interchanging the sums, therefore,

$$
\eta\|f\|_{1}|\Delta| \leq \sum_{x \in G} f(x) \sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}
$$

By Hölder's inequality the right-hand side is at most

$$
\left(\sum_{x}|f(x)|\right)^{1-1 / m}\left(\sum_{x}|f(x)|\left|\sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}\right|^{m}\right)^{1 / m}
$$

Taking $m$ th powers, therefore, we have

$$
\eta^{m}|\Delta|^{m}\|f\|_{1} \leq \sum_{x}|f(x)|\left|\sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}\right|^{m}
$$

By assumption we can bound $|f(x)| \leq|f(x)| \nu(x)^{1 / 2}$, and therefore by the Cauchy-Schwarz inequality the right-hand side is bounded above by

$$
\|f\|_{2}\left(\sum_{x} \nu(x)\left|\sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}\right|^{2 m}\right)^{1 / 2}
$$

Squaring and simplifying, we deduce that

$$
\eta^{2 m}|\Delta|^{2 m} \frac{\|f\|_{1}^{2}}{\|f\|_{2}^{2}} \leq \sum_{x} \nu(x)\left|\sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}\right|^{2 m}
$$

Expanding out the power, the right-hand side is equal to

$$
\sum_{x} \nu(x) \sum_{\gamma_{1}, \ldots, \gamma_{2 m}} c_{\gamma_{1}} \cdots \overline{c_{\gamma_{2 m}}}\left(\overline{\gamma_{1}} \cdots \gamma_{2 m}\right)(x)
$$

Changing the order of summation this is equal to

$$
\sum_{\gamma_{1}, \ldots, \gamma_{2 m}} c_{\gamma_{1}} \cdots \overline{c_{\gamma_{2 m}}} \hat{\nu}\left(\gamma_{1} \cdots \overline{\gamma_{2 m}}\right)
$$

The result follows by the triangle inequality.

Lemma 2.8. Let $G$ be a finite abelian group and $f: G \rightarrow \mathbb{C}$. Let $\Delta \subseteq \Delta_{\eta}(f)$. Then, for any $m \geq 1$.

$$
N^{-1} \eta^{2 m} \frac{\|f\|_{1}^{2}}{\|f\|_{2}^{2}}|\Delta|^{2 m} \leq E_{2 m}(\Delta)
$$

Proof. Apply Lemma 2.7 with $\nu \equiv 1$, and use the fact that $\sum_{x} \lambda(x)$ is $N$ if $\lambda \equiv 1$ and 0 otherwise.

Lemma 2.9. If $A \subset G$ and $m \geq 1$ then

$$
E_{2 m}(A)=\sum_{x} 1_{A}^{(m)}(x)^{2} .
$$

Proof. Expand out definitions.
Lemma 2.10. If $A \subseteq G$ is dissociated then $E_{2 m}(A) \leq(32 e m|A|)^{m}$. Proof. By Lemma 2.9 and Lemma 2.3

$$
\begin{aligned}
E_{2 m}(A) & =\underset{\gamma}{\mathbb{E}}\left|\hat{1}_{A}(\gamma)\right|^{2 m} \\
& =\left\|\hat{1}_{A}\right\|_{2 m}^{2 m} \\
& \leq(4 \sqrt{2 e m})^{2 m}\left\|\hat{1}_{A}\right\|_{2}^{2 m} \\
& =(32 e m)^{m}\left\|1_{A}\right\|_{2}^{2 m} \\
& =(32 e m)^{m}|A|^{m}
\end{aligned}
$$

Lemma 2.11. If $A \subseteq G$ contains no dissociated set with $\geq K+1$ elements then there is $A^{\prime} \subseteq A$ of size $\left|A^{\prime}\right| \leq K$ such that

$$
A \subseteq\left\{\sum_{a \in A^{\prime}} c_{a} a: c_{a} \in\{-1,0,1\}\right\}
$$

Proof. Let $A^{\prime} \subseteq A$ be a maximal dissociated subset (this exists and is non-empty, since trivially any singleton is dissociated). We have $\left|A^{\prime}\right| \leq K$ by assumption.

Let $S$ be the span on the right-hand side. It is obvious that $A^{\prime} \subseteq S$. Suppose that $x \in A \backslash A^{\prime}$. Then $A^{\prime} \cup\{x\}$ is not dissociated by maximality. Therefore there exists some $y \in G$ and two distinct sets $B, C \subseteq A^{\prime} \cup\{x\}$ such that

$$
\sum_{b \in B} b=y=\sum_{c \in C} c .
$$

If $x \notin B$ and $x \notin C$ then this contradicts the dissociativity of $A^{\prime}$. If $x \in B$ and $x \in C$ then we have

$$
\sum_{b \in B \backslash x} b=y-x=\sum_{c \in C \backslash x} c
$$

again contradicting the dissociativity of $A^{\prime}$. Without loss of generality, therefore, $x \in B$ and $x \notin C$. Therefore

$$
x=\sum_{c \in C} c-\sum_{b \in B \backslash x} b
$$

which is in the span as required.
Theorem 2.12 (Chang's lemma). Let $G$ be a finite abelian group and $f: G \rightarrow \mathbb{C}$. Let $\eta>0$ and $\alpha=N^{-1}\|f\|_{1}^{2} /\|f\|_{2}^{2}$. There exists some $\Delta \subseteq \Delta_{\eta}(f)$ such that

$$
|\Delta| \leq\left\lceil e \mathcal{L}(\alpha) \eta^{-2}\right\rceil
$$

and

$$
\Delta_{\eta}(f) \subseteq\left\{\sum_{\gamma \in \Delta} c_{\gamma} \gamma: c_{\gamma} \in\{-1,0,1\}\right\}
$$

Proof. By Lemma 2.11 it suffices to show that $\Delta_{\eta}(f)$ contains no dissociated set with at least

$$
K=\left\lceil e \mathcal{L}(\alpha) \eta^{-2}\right\rceil+1
$$

many elements. Suppose not, and let $\Delta \subseteq \Delta_{\eta}(f)$ be a dissociated set of size $K$. Then by Lemma 2.10 we have, for any $m \geq 1$,

$$
E_{2 m}(\Delta) \leq m!K^{m}
$$

On the other hand, by Lemma 2.8,

$$
\eta^{2 m} \alpha K^{2 m} \leq E_{2 m}(\Delta)
$$

Rearranging these bounds, we have

$$
K^{m} \leq m!\alpha^{-1} \eta^{-2 m} \leq m^{m} \alpha^{-1} \eta^{-2 m}
$$

Therefore $K \leq \alpha^{-1 / m} m \eta^{-2}$. This is a contradiction to the choice of $K$ if we choose $m=$ $\mathcal{L}(\alpha)$, since $\alpha^{-1 / m} \leq e$.

## Chapter 3

## Unbalancing

Lemma 3.1. For any function $f: G \rightarrow \mathbb{R}$ and integer $k \geq 0$

$$
\mathbb{E}_{x} f \circ f(x)^{k} \geq 0
$$

Proof. Test.
Lemma 3.2. Let $\epsilon \in(0,1)$ and $\nu: G \rightarrow \mathbb{R}_{\geq 0}$ be some probability measure such that $\hat{\nu} \geq 0$. Let $f: G \rightarrow \mathbb{R}$. If $\|f \circ f\|_{p(\nu)} \geq$ f for some $p \geq 1$ then $\|f \circ f+1\|_{p^{\prime}(\nu)} \geq 1+\frac{1}{2} \epsilon$ for $p^{\prime}=120 \epsilon^{-1} \log (3 / \epsilon)$.

Proof. Up to gaining a factor of 5 in $p^{\prime}$, we can assume that $p \geq 5$ is an odd integer. Since the Fourier transforms of $f$ and $\nu$ are non-negative,

$$
\mathbb{E} \nu f^{p}=\hat{\nu} * \hat{f}^{(p)}\left(0_{\widehat{G}}\right) \geq 0
$$

It follows that, since $2 \max (x, 0)=x+|x|$ for $x \in \mathbb{R}$,

$$
2\left\langle\max (f, 0), f^{p-1}\right\rangle_{\nu}=\mathbb{E} \nu f^{p}+\langle | f\left|, f^{p-1}\right\rangle_{\nu} \geq\|f\|_{p(\nu)}^{p} \geq \epsilon^{p} .
$$

Therefore, if $P=\{x: f(x) \geq 0\}$, then $\left\langle 1_{P}, f^{p}\right\rangle_{\nu} \geq \frac{1}{2} \epsilon^{p}$. Furthermore, if $T=\{x \in P$ : $\left.f(x) \geq \frac{3}{4} \epsilon\right\}$ then $\left\langle 1_{P \backslash T}, f^{p}\right\rangle_{\nu} \leq \frac{1}{4} \epsilon^{p}$, and hence by the Cauchy-Schwarz inequality,

$$
\nu(T)^{1 / 2}\|f\|_{2 p(\nu)}^{p} \geq\left\langle 1_{T}, f^{p}\right\rangle_{\nu} \geq \frac{1}{4} \epsilon^{p}
$$

On the other hand, by the triangle inequality

$$
\|f\|_{2 p(\nu)} \leq 1+\|f+1\|_{2 p(\nu)} \leq 3
$$

or else we are done, with $p^{\prime}=2 p$. Hence $\nu(T) \geq(\epsilon / 3)^{3 p}$. It follows that, for any $p^{\prime} \geq 1$,

$$
\left.\|f+1\|_{p^{\prime}(\nu)} \geq\left\langle 1_{T},\right| f+\left.1\right|^{p^{\prime}}\right\rangle_{\nu}^{1 / p^{\prime}} \geq\left(1+\frac{3}{4} \epsilon\right)(\epsilon / 3)^{3 p / p^{\prime}}
$$

The desired bound now follows if we choose $p^{\prime}=24 \epsilon^{-1} \log (3 / \epsilon) p$, using $1-x \leq e^{-x}$.

## Chapter 4

## Dependent random choice

Lemma 4.1. Let $p \geq 2$ be an even integer. Let $B_{1}, B_{2} \subseteq G$ and $\mu=\mu_{B_{1}} \circ \mu_{B_{2}}$. For any finite set $A \subseteq G$ and function $f: G \rightarrow \mathbb{R}_{\geq 0}$ there exist $A_{1} \subseteq B_{1}$ and $A_{2} \subseteq B_{2}$ such that

$$
\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, f\right\rangle\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p} \leq 2\left\langle\left(1_{A} \circ 1_{A}\right)^{p}, f\right\rangle_{\mu}
$$

and

$$
\min \left(\frac{\left|A_{1}\right|}{\left|B_{1}\right|}, \frac{\left|A_{2}\right|}{\left|B_{2}\right|}\right) \geq \frac{1}{4}|A|^{-2 p}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{2 p}
$$

Proof. First note that the statement is trivially true (with $A_{1}=B_{1}$ and $A_{2}=B_{2}$, say) if $\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}=0$. We can therefore assume this is $\neq 0$.

For $s \in G^{p}$ let $A_{1}(s)=B_{1} \cap\left(A+s_{1}\right) \cap \cdots \cap\left(A+s_{p}\right)$, and similarly for $A_{2}(s)$. Note that

$$
\begin{aligned}
\left\langle\left(1_{A} \circ 1_{A}\right)^{p}, f\right\rangle_{\mu} & =\sum_{x} \mu_{B_{1}} \circ \mu_{B_{2}}(x)\left(1_{A} \circ 1_{A}(x)\right)^{p} f(x) \\
& =\sum_{b_{1}, b_{2}} \mu_{B_{1}}\left(b_{1}\right) \mu_{B_{2}}\left(b_{2}\right) 1_{A} \circ 1_{A}\left(b_{1}-b_{2}\right)^{p} f\left(b_{1}-b_{2}\right) \\
& =\sum_{b_{1}, b_{2}} \mu_{B_{1}}\left(b_{1}\right) \mu_{B_{2}}\left(b_{2}\right)\left(\sum_{t \in G} 1_{A+t}\left(b_{1}\right) 1_{A+t}\left(b_{2}\right)\right)^{p} f\left(b_{1}-b_{2}\right) \\
& =\sum_{b_{1}, b_{2}} \mu_{B_{1}}\left(b_{1}\right) \mu_{B_{2}}\left(b_{2}\right) \sum_{s \in G^{p}} 1_{A_{1}(s)}\left(b_{1}\right) 1_{A_{2}(s)}\left(b_{2}\right) f\left(b_{1}-b_{2}\right) \\
& =\left|B_{1}\right|^{-1}\left|B_{2}\right|^{-1} \sum_{s \in G^{p}}\left\langle 1_{A_{1}(s)} \circ 1_{A_{2}(s)}, f\right\rangle .
\end{aligned}
$$

In particular, applying this with $f \equiv 1$ we see that

$$
\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}=\left|B_{1}\right|^{-1}\left|B_{2}\right|^{-1} \sum_{s}\left|A_{1}(s)\right|\left|A_{2}(s)\right|
$$

and

$$
\frac{\left\langle\left(1_{A} \circ 1_{A}\right)^{p}, f\right\rangle_{\mu}}{\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}}=\frac{\sum_{s}\left\langle 1_{A_{1}(s)} \circ 1_{A_{2}(s)}, f\right\rangle}{\sum_{s}\left|A_{1}(s)\right|\left|A_{2}(s)\right|}=\eta
$$

say. Let $M>0$ be some parameter, and let

$$
g(s)= \begin{cases}1 & \text { if } 0<\left|A_{1}(s)\right|\left|A_{2}(s)\right|<M^{2} \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Then we have

$$
\sum_{s} g(s)\left|A_{1}(s)\right|\left|A_{2}(s)\right|<\sum_{s} M\left|A_{1}(s)\right|^{1 / 2}\left|A_{2}(s)\right|^{1 / 2}
$$

To see why, note first that each summand on the left-hand side is $\leq$ the corresponding summand on the right-hand side, arguing by cases on whether $g(s)=1$ or not. It therefore suffices to show that there exists some $s$ such that the summand on the left-hand side is $<$ the corresponding summand on the right-hand side.

If $g(s)=0$ for all $s$ then choose some $s$ such that $\left|A_{1}(s)\right|\left|A_{2}(s)\right| \geq M^{2}$ (this must exist or else $\left|A_{1}(s)\right|\left|A_{2}(s)\right|=0$ for all $s$, but then $\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}=0$ by the above calculation). Otherwise, choose some $s$ such that $g(s)=1$, and note that for this $s$ we have, by definition of $s$,

$$
\left|A_{1}(s)\right|\left|A_{2}(s)\right|<M\left|A_{1}(s)\right|^{1 / 2}\left|A_{2}(s)\right|^{1 / 2}
$$

We now choose

$$
M=\frac{1}{2}|A|^{-p}\left(\left|B_{1}\right|\left|B_{2}\right|\right)^{1 / 2}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}
$$

so that, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\sum_{s} g(s)\left|A_{1}(s)\right|\left|A_{2}(s)\right| & <M \sum_{s}\left|A_{1}(s)\right|^{1 / 2}\left|A_{2}(s)\right|^{1 / 2} \\
& \leq M\left(\sum_{s} \sum_{x \in G} 1_{A_{1}(s)}(x)\right)^{1 / 2}\left(\sum_{s} \sum_{x \in G} 1_{A_{2}(s)}(x)\right)^{1 / 2} \\
& =M|A|^{p}\left(\left|B_{1}\right|\left|B_{2}\right|\right)^{1 / 2} \\
& =\frac{1}{2} \sum_{s}\left|A_{1}(s)\right|\left|A_{2}(s)\right|
\end{aligned}
$$

and so

$$
\sum_{s}(1-g(s))\left|A_{1}(s)\right|\left|A_{2}(s)\right|>\frac{1}{2} \sum_{s}\left|A_{1}(s)\right|\left|A_{2}(s)\right|
$$

whence

$$
\sum_{s}\left\langle 1_{A_{1}(s)} \circ 1_{A_{2}(s)}, f\right\rangle=\eta \sum\left|A_{1}(s)\right|\left|A_{2}(s)\right|<2 \eta \sum_{s}\left|A_{1}(s)\right|\left|A_{2}(s)\right|(1-g(s)) .
$$

In particular there must exist some $s$ such that

$$
\left\langle 1_{A_{1}(s)} \circ 1_{A_{2}(s)}, f\right\rangle<2 \eta\left|A_{1}(s)\right|\left|A_{2}(s)\right|(1-g(s)) .
$$

We claim this $s$ meets the requirements. The first is satisfied since the right-hand side is $\leq 2 \eta\left|A_{1}(s)\right|\left|A_{2}(s)\right|$. The second is satisfied since the left-hand side is trivially $\geq 0$ and hence such an $s$ must satisfy $g(s)=0$, whence either $\left|A_{1}(s)\right|\left|A_{2}(s)\right| \geq M^{2}$, that is,

$$
\left|A_{1}(s)\right|\left|A_{2}(s)\right| \geq \frac{1}{4}|A|^{-2 p}\left|B_{1}\right|\left|B_{2}\right|\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{2 p}
$$

or $\left|A_{1}(s)\right|\left|A_{2}(s)\right|=0$, which can't happen because then the right-hand side is $=0$.
The final bound now follows since $x y \leq \min (x, y)$ when $x, y \leq 1$.

Lemma 4.2. Let $\epsilon, \delta>0$ and $p \geq \max \left(2, \epsilon^{-1} \log (2 / \delta)\right)$ be an even integer. Let $B_{1}, B_{2} \subseteq G$, and let $\mu=\mu_{B_{1}} \circ \mu_{B_{2}}$. For any finite set $A \subseteq G$, if

$$
S=\left\{x \in G: 1_{A} \circ 1_{A}(x)>(1-\epsilon)\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}\right\}
$$

then there are $A_{1} \subseteq B_{1}$ and $A_{2} \subseteq B_{2}$ such that

$$
\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S}\right\rangle \geq 1-\delta
$$

and

$$
\min \left(\frac{\left|A_{1}\right|}{\left|B_{1}\right|}, \frac{\left|A_{2}\right|}{\left|B_{2}\right|}\right) \geq \frac{1}{4}|A|^{-2 p}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{2 p} .
$$

Proof. Apply Lemma 4.1 with $f=1_{G \backslash S}$. This produces some $A_{1} \subseteq B_{1}$ and $A_{2} \subseteq B_{2}$ such that

$$
\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{G \backslash S}\right\rangle \leq 2 \frac{\left\langle\left(1_{A} \circ 1_{A}\right)^{p}, 1_{G \backslash S}\right\rangle_{\mu}}{\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}}
$$

and

$$
\min \left(\frac{\left|A_{1}\right|}{\left|B_{1}\right|}, \frac{\left|A_{2}\right|}{\left|B_{2}\right|}\right) \geq \frac{1}{4}|A|^{-2 p}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{2 p}
$$

It then suffices to note that

$$
\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S}\right\rangle=1-\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{G \backslash S}\right\rangle
$$

and by definition of $S$ we have

$$
\left\langle\left(1_{A} \circ 1_{A}\right)^{p}, 1_{G \backslash S}\right\rangle_{\mu} \leq(1-\epsilon)^{p}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p} \sum_{x} \mu(x)=(1-\epsilon)^{p}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}
$$

Now use the fact that $p \geq \epsilon^{-1} \log (2 / \delta)$ together with the inequality $1-x \leq e^{-x}$ to deduce that the right-hand side is $\leq \frac{\delta}{2}\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)}^{p}$.

Corollary 4.3. Let $\epsilon, \delta>0$ and $p \geq \max \left(2, \epsilon^{-1} \log (2 / \delta)\right)$ be an even integer and $\mu \equiv 1 / N$. If $A \subseteq G$ has density $\alpha$ and

$$
S=\left\{x: \mu_{A} \circ \mu_{A}(x) \geq(1-\epsilon)\left\|\mu_{A} \circ \mu_{A}\right\|_{p(\mu)}\right\}
$$

then there are $A_{1}, A_{2} \subseteq G$ such that

$$
\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S}\right\rangle \geq 1-\delta
$$

and both $A_{1}$ and $A_{2}$ have density

$$
\geq \frac{1}{4} \alpha^{2 p}
$$

Proof. We apply Lemma 4.2 with $B_{1}=B_{2}=G$. It remains to note that

$$
\left\|1_{A} \circ 1_{A}\right\|_{p(\mu)} \geq\left\|1_{A} \circ 1_{A}\right\|_{1(\mu)}=|A|^{2} / N
$$

## Chapter 5

## Finite field model

Theorem 5.1. If $A_{1}, A_{2}, S \subseteq \mathbb{F}_{q}^{n}$ are such that $A_{1}$ and $A_{2}$ both have density at least $\alpha$ then there is a subspace $V$ of codimension

$$
\operatorname{codim}(V) \leq 2^{27} \mathcal{L}(\alpha)^{2} \mathcal{L}(\epsilon \alpha)^{2} \epsilon^{-2}
$$

such that

$$
\left|\left\langle\mu_{V} * \mu_{A_{1}} * \mu_{A_{2}}, 1_{S}\right\rangle-\left\langle\mu_{A_{1}} * \mu_{A_{2}}, 1_{S}\right\rangle\right| \leq \epsilon
$$

Proof. (In this proof we write $G=\mathbb{F}_{q}^{n}$.) Let $k=\lceil\mathcal{L}(\epsilon \alpha / 4)\rceil$. Note that $\left|A_{1}+G\right|=|G| \leq$ $\alpha^{-1}|A|$. Furthermore, $\left|A_{2}\right| /|S| \geq \alpha$. Therefore by Theorem 1.8 there exists some $T \subseteq G$ with

$$
|T| \geq \exp \left(-2^{16} \mathcal{L}(\alpha)^{2} k^{2} \epsilon^{-2}\right)|S|
$$

such that

$$
\left\|\mu_{T}^{(k)} * \mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}-\mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}\right\|_{\infty} \leq \epsilon / 4
$$

Let $\Delta=\Delta_{1 / 2}\left(\mu_{T}\right)$ and

$$
V=\{x \in G: \gamma(x)=1 \text { for all } \gamma \in \Delta\} .
$$

Note that

$$
\left\langle\mu_{V} * \mu_{A_{1}} * \mu_{A_{2}}, 1_{S}\right\rangle=\left\langle\mu_{V}, \mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}\right\rangle=\frac{1}{|V|} \sum_{v \in V} \mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(v)
$$

and

$$
\left\langle\mu_{A_{1}} * \mu_{A_{2}}, 1_{S}\right\rangle=\mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(0) .
$$

Therefore

$$
\left|\left\langle\mu_{V} * \mu_{A_{1}} * \mu_{A_{2}}, 1_{S}\right\rangle-\left\langle\mu_{A_{1}} * \mu_{A_{2}}, 1_{S}\right\rangle\right| \leq \frac{1}{|V|} \sum_{v \in V}\left|\mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(v)-\mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(0)\right| .
$$

In particular it suffices to show that, for any $v \in V$,

$$
\left|\mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(v)-\mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(0)\right| \leq \epsilon
$$

By the triangle inequality and construction of $T$, it suffices to show that

$$
\left|\mu_{T}^{(k)} * \mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(v)-\mu_{T}^{(k)} * \mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(0)\right| \leq \epsilon / 2
$$

By the Fourier transform we have, for any $x \in G$,

$$
\mu_{T}^{(k)} * \mu_{A_{1}} * \mu_{A_{2}} \circ 1_{S}(x)=\frac{1}{N} \sum_{\gamma \in \widehat{G}} \widehat{\mu_{T}}(\gamma)^{k} \widehat{\mu_{A_{1}}}(\gamma) \widehat{\mu_{A_{2}}}(\gamma) \widehat{1_{-S}}(\gamma) \gamma(x)
$$

Therefore the left-hand side of the desired inequality is, by the triangle inequality, at most

$$
\frac{1}{N} \sum_{\gamma \in \widehat{G}}\left|\widehat{\mu_{T}}(\gamma)\right|^{k}\left|\widehat{\mu_{A_{1}}}(\gamma) \widehat{\mu_{A_{2}}}(\gamma) \widehat{1_{-S}}(\gamma)\right||\gamma(v)-1|
$$

By choice of $v \in V$ the summand vanishes when $\gamma \in \Delta$. When $\gamma \notin \Delta$ the summand is bounded above by

$$
2^{1-k}\left|\widehat{\mu_{A_{1}}}(\gamma) \widehat{\mu_{A_{2}}}(\gamma) \widehat{1_{-S}}(\gamma)\right|
$$

Therefore the left-hand side of the desired inequality is at most

$$
2^{1-k} \frac{1}{N} \sum_{\gamma}\left|\widehat{\mu_{A_{1}}}(\gamma) \widehat{\mu_{A_{2}}}(\gamma) \widehat{1_{-S}}(\gamma)\right| \leq 2^{1-k}|S| \frac{1}{N} \sum_{\gamma}\left|\widehat{\mu_{A_{1}}}(\gamma) \widehat{\mu_{A_{2}}}(\gamma)\right|
$$

using the trivial bound $\left|\widehat{1_{S}}\right| \leq|S|$. By the Cauchy-Schwarz inequality the sum on the right is at most

$$
\left(\sum_{\gamma}\left|\widehat{\mu_{A_{1}}}\right|^{2}\right)^{1 / 2}\left(\sum_{\gamma}\left|\widehat{\mu_{A_{2}}}\right|^{2}\right)^{1 / 2}
$$

By Parseval's identity this is at most $\alpha^{-1}$. Therefore the desired inequality follows from

$$
2^{1-k}|S| \frac{1}{N} \alpha^{-1} \leq 2^{1-k} \alpha^{-1} \leq \epsilon / 2
$$

It remains to check the codimension of $V$. For this, let $\Delta^{\prime} \subseteq \Delta$ be as provided by Chang's lemma, Lemma 2.12, so that

$$
\Delta \subseteq\left\{\sum_{\gamma \in \Delta^{\prime}} c_{\gamma} \gamma: c_{\gamma} \in\{-1,0,1\}\right\}
$$

Let

$$
W=\left\{x \in G: \gamma(x)=1 \text { for all } \gamma \in \Delta^{\prime}\right\} .
$$

It follows that $W \leq V$, so it suffices to bound the codimension of $W$. This we can bound trivially using the bound from Chang's lemma and the fact that $\mathcal{L}(\delta)=\log \left(e^{2} / \delta\right) \leq 2+$ $\log (1 / \delta) \leq 4 \log (1 / \delta)$, provided $\log (1 / \delta) \geq 1$, so

$$
\left|\Delta^{\prime}\right| \leq\lceil 4 e \mathcal{L}(\delta)\rceil \leq 2^{7} \log (1 / \delta)
$$

where

$$
\delta=|T| / N \geq \exp \left(-2^{16} \mathcal{L}(\alpha)^{2} k^{2} \epsilon^{-2}\right)
$$

so

$$
\operatorname{codim}(V) \leq\left|\Delta^{\prime}\right| \leq 2^{23} \mathcal{L}(\alpha)^{2} k^{2} \epsilon^{-2} \leq 2^{25} \mathcal{L}(\alpha)^{2} \mathcal{L}(\epsilon \alpha / 4)^{2} \epsilon^{-2}
$$

and now use $\mathcal{L}(\epsilon \alpha / 4) \leq 2 \mathcal{L}(\epsilon \alpha)$, say.

Lemma 5.2. For any function $f: G \rightarrow \mathbb{C}$ and integer $k \geq 1$

$$
\|f * f\|_{2 k} \leq\|f \circ f\|_{2 k}
$$

Proof. To finish, similar trick to unbalancing.
Lemma 5.3. For any function $f$ with $\sum f(x)=1$

$$
f * f-1 / N=(f-1 / N) *(f-1 / N)
$$

Proof. Expand everything out.
Lemma 5.4. For any function $f$ with $\sum f(x)=1$

$$
f \circ f-1 / N=(f-1 / N) \circ(f-1 / N)
$$

Proof. Expand everything out.
Lemma 5.5. Let $\epsilon>0$ and $\mu \equiv 1 / N$. If $A, C \subseteq G$, where $C$ has density at least $\gamma$, and

$$
\left|N\left\langle\mu_{A} * \mu_{A}, \mu_{C}\right\rangle-1\right|>\epsilon
$$

then, if $f=\left(\mu_{A}-1 / N\right),\|f \circ f\|_{p(\mu)} \geq \epsilon / 2 N$ for $p=2\lceil\mathcal{L}(\gamma)\rceil$.
Proof. By Hölder's inequality, for any $p \geq 1$

$$
\epsilon<\left|N\left\langle\mu_{A} * \mu_{A}-1 / N, \mu_{C}\right\rangle\right| \leq\left\|\mu_{A} * \mu_{A}-1 / N\right\|_{p} \gamma^{-1 / p} N^{1-1 / p} .
$$

In particular if we choose $p=2\lceil\mathcal{L}(\gamma)\rceil$ then $\gamma^{-1 / p} \leq e^{1 / 2} \leq 2$ and so we deduce that, by Lemma 5.3,

$$
\|f * f\|_{p} \geq \frac{1}{2} \epsilon N^{1 / p-1} .
$$

It remains to use Lemmas 5.3 and 5.4 and apply Lemma 5.2, and note that we can pass from the $L^{p}$ norm to the $L^{p}(\mu)$ norm losing a factor of $N^{1 / p}$.

Proposition 5.6. Let $\epsilon \in(0,1)$. If $A, C \subseteq \mathbb{F}_{q}^{n}$, where $C$ has density at least $\gamma$, and

$$
\left|N\left\langle\mu_{A} * \mu_{A}, \mu_{C}\right\rangle-1\right|>\epsilon
$$

then there is a subspace $V$ of codimension

$$
\leq 2^{171} \epsilon^{-24} \mathcal{L}(\alpha)^{4} \mathcal{L}(\gamma)^{4}
$$

such that $\left\|1_{A} * \mu_{V}\right\|_{\infty} \geq(1+\epsilon / 32) \alpha$.
Proof. By Lemma 5.5, if $f=\mu_{A}-1 / N$,

$$
\|f \circ f\|_{p(\mu)} \geq \epsilon / 2 N
$$

where $p=2\lceil\mathcal{L}(\gamma)\rceil \leq 4 \mathcal{L}(\gamma)$. By Lemma 3.2 there exists some $p^{\prime}$ such that

$$
p^{\prime} \leq 128 \epsilon^{-1} \log (96 / \epsilon) \mathcal{L}(\gamma)
$$

such that

$$
\|f \circ f+1 / N\|_{p^{\prime}(\mu)} \geq(1+\epsilon / 4) / N
$$

By Lemma $5.4 f \circ f+1 / N=\mu_{A} \circ \mu_{A}$.
Let $q=2\left\lceil p^{\prime}+2^{8} \epsilon^{-2} \log (64 / \epsilon)\right\rceil$. By Corollary 4.3, there are $A_{1}, A_{2}$, both of density $\geq \alpha^{2 q}$ such that

$$
\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S}\right\rangle \geq 1-\epsilon / 32
$$

where

$$
S=\left\{x: \mu_{A} \circ \mu_{A}(x) \geq(1-\epsilon / 16)\left\|\mu_{A} \circ \mu_{A}\right\|_{q(\mu)}\right\} .
$$

Since

$$
\left\|\mu_{A} \circ \mu_{A}\right\|_{q(\mu)} \geq\left\|\mu_{A} \circ \mu_{A}\right\|_{p^{\prime}(\mu)} \geq(1+\epsilon / 4) / N
$$

we know

$$
S \subseteq S^{\prime}=\left\{x: \mu_{A} \circ \mu_{A}(x) \geq(1+\epsilon / 8) / N\right\}
$$

By Theorem 5.1 (applied with $\epsilon$ replaced by $\epsilon / 32$ ) there is a subspace $V$ of codimension

$$
\leq 2^{37} \mathcal{L}\left(\alpha^{2 q}\right)^{2} \mathcal{L}\left(\epsilon \alpha^{2 q} / 32\right)^{2} \epsilon^{-2}
$$

such that

$$
\left\langle\mu_{V} * \mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S^{\prime}}\right\rangle \geq 1-\frac{1}{16} \epsilon .
$$

Using $\mathcal{L}(x y) \leq x^{-1} \mathcal{L}(y)$ we have

$$
\mathcal{L}\left(\epsilon \alpha^{2 q} / 32\right) \leq 32 \epsilon^{-1} \mathcal{L}\left(\alpha^{2 q}\right)
$$

and we also use $\mathcal{L}\left(x^{y}\right) \leq y \mathcal{L}(x)$ to simplify the codimension bound to

$$
\leq 2^{51} q^{4} \mathcal{L}(\alpha)^{4} \epsilon^{-4}
$$

We further note that (using $\log x \leq x$ say)

$$
q \leq 2^{10} p^{\prime} \epsilon^{-2} \log (64 / \epsilon) \leq 2^{30} \epsilon^{-5} \mathcal{L}(\gamma)
$$

Therefore the desired codimension bound follows. Finally, by definition of $S^{\prime}$, it follows that

$$
\begin{aligned}
(1+\epsilon / 32) / N & \leq((1+\epsilon / 8) / N)(1-\epsilon / 16) \\
& \leq\left\langle\mu_{V} * \mu_{A_{1}} \circ \mu_{A_{2}}, \mu_{A} \circ \mu_{A}\right\rangle \\
& \leq\left\|\mu_{V} * \mu_{A}\right\|_{\infty}\left\|\mu_{A} * \mu_{A_{2}} \circ \mu_{A_{1}}\right\|_{1} \\
& =\left\|\mu_{V} * 1_{A}\right\|_{\infty}|A|^{-1},
\end{aligned}
$$

and the proof is complete.
Lemma 5.7. If $A \subseteq G$ has no non-trivial three-term arithmetic progressions and $G$ has odd order then

$$
\left\langle\mu_{A} * \mu_{A}, \mu_{2 \cdot A}\right\rangle=1 /|A|^{2}
$$

Proof. Expand out using definitions.
Theorem 5.8. Let $q$ be an odd prime power. If $A \subseteq \mathbb{F}_{q}^{n}$ with $\alpha=|A| / q^{n}$ has no non-trivial three-term arithmetic progressions then

$$
n \ll \mathcal{L}(\alpha)^{9} .
$$

Proof. Let $t \geq 0$ be maximal such that there is a sequence of subspaces $\mathbb{F}_{q}^{n}=V_{0} \geq \cdots \geq V_{t}$ and associated $A_{i} \subseteq V_{i}$ with $A_{0}=A$ such that

1. for $0 \leq i \leq t$ there exists $x_{i}$ such that $A_{i} \subseteq A-x_{i}$,
2. with $\alpha_{i}=\left|A_{i}\right| /\left|V_{i}\right|$ we have

$$
\alpha_{i+1} \geq \frac{65}{64} \alpha_{i}
$$

for $0 \leq i<t$, and
3.

$$
\operatorname{codim}\left(V_{i+1}\right) \leq \operatorname{codim}\left(V_{i}\right)+O\left(\mathcal{L}(\alpha)^{8}\right)
$$

for $0 \leq i<t$. (here the second summand should be replaced with whatever explicit codimension bound we get from the above).

Note this is well-defined since $t=0$ meets the requirements, and this process is finite and $t \ll \mathcal{L}(\alpha)$, since $\alpha_{i} \leq 1$ for all $i$. Therefore

$$
\operatorname{codim}\left(V_{t}\right) \ll \mathcal{L}(\alpha)^{9}
$$

Suppose first that

$$
\left|V_{t}\right|\left\langle\mu_{A_{t}} * \mu_{A_{t}}, \mu_{2 \cdot A_{t}}\right\rangle<1 / 2
$$

In this case we now apply Proposition 5.6 to $A_{t} \subseteq V_{t}$ with $\epsilon=1 / 2$ (note that $N=\left|V_{t}\right|$ and all inner product, $\mu$ etc, are relative to the ambient group $V_{t}$ now). Therefore there is a subspace $V \leq V_{t}$ of codimension (relative to $V_{t}$ ) of $\ll \mathcal{L}(\alpha)^{8}$ such that there exists some $x \in V_{t}$ with

$$
\frac{\left|\left(A_{t}-x\right) \cap V\right|}{|V|}=1_{A_{t}} * \mu_{V}(x)=\left\|1_{A_{t}} * \mu_{V}\right\|_{\infty} \geq(1+1 / 64) \alpha_{t}
$$

which contradicts the maximality of $t$, letting $V_{t+1}=V$ and $A_{t+1}=\left(A_{t}-x\right) \cap V_{t}$.
Therefore

$$
\left|V_{t}\right|\left\langle\mu_{A_{t}} * \mu_{A_{t}}, \mu_{2 \cdot A_{t}}\right\rangle \geq 1 / 2
$$

By Lemma 5.7 the left-hand side is equal to $\left|V_{t}\right| /\left|A_{t}\right|^{2}$, and therefore

$$
\alpha^{2} \leq \alpha_{t}^{2} \leq 2 /\left|V_{t}\right|
$$

By the codimension bound the right-hand side is at most

$$
2 q^{O\left(\mathcal{L}(\alpha)^{9}\right)-n}
$$

If $\alpha^{2} \leq 2 q^{-n / 2}$ we are done, otherwise we deduce that $\mathcal{L}(\alpha)^{9} \gg n$ as required.

## Chapter 6

## Bohr sets

Definition 6.1 (Bohr sets). Let $\nu: \widehat{G} \rightarrow \mathbb{R}$. The corresponding Bohr set is defined to be

$$
\operatorname{Bohr}(\nu)=\{x \in G:|1-\gamma(x)| \leq \nu(\gamma) \text { for all } \gamma \in \Gamma\} .
$$

The rank of $\nu$, denoted by $\operatorname{rk}(\nu)$, is defined to be the size of the set of those $\gamma \in \widehat{G}$ such that $\nu(\gamma)<2$.
(Basic API facts: Bohr sets are symmetric and contain 0. Also that, without loss of generality, we can assume $\nu$ takes only values in $\mathbb{R}_{\geq 0}-I$ think it might be easier to have the definition allow arbitrary real values, and then switch to non-negative only in proofs where convenient. Or could have the definition only allow non-negative valued functions in the first place.)

Lemma 6.2. If $\rho \in(0,1)$ and $\nu: \widehat{G} \rightarrow \mathbb{R}$ then

$$
|\operatorname{Bohr}(\rho \cdot \nu)| \geq(\rho / 4)^{\mathrm{rk}(\nu)}|\operatorname{Bohr}(\nu)| .
$$

Proof. There are at most $\lceil 4 / \rho\rceil$ many $z_{i}$ such that if $|1-w| \leq \nu(\gamma)$ then $\left|z_{i}-w\right| \leq \rho \nu(\gamma) / 2$ for some $i$. Let $\Gamma=\{\gamma: \nu(\gamma)<2\}$ and define a function $f: \operatorname{Bohr}(\nu) \rightarrow\lceil 2 / \rho\rceil^{\operatorname{rk}(\nu)}$ where for $\gamma \in \Gamma$ we assign the $\gamma$-coordinate of $f(x)$ as whichever $j$ has $\left|z_{j}-\gamma(x)\right| \leq \rho \nu(\gamma) / 2$.

By the pigeonhole principle there must exist some $\left(j_{1}, \ldots, j_{d}\right)$ such that $f^{-1}\left(j_{1}, \ldots, j_{d}\right)$ has size at least $(\lceil 2 / \rho\rceil)^{-\mathrm{rk}(\nu)}|\operatorname{Bohr}(\nu)|$. Call this set $B^{\prime}$. It must be non-empty, so fix some $x \in B^{\prime}$. We claim that $B^{\prime}-x \subseteq|\operatorname{Bohr}(\rho \cdot \nu)|$, which completes the proof.

Suppose that $z=x+y$ with $x, y \in B^{\prime}$, and fix some $\gamma \in \Gamma$. By assumption there is some $z_{j} \in \mathbb{C}$ such that $\left|z_{j}-\gamma(x)\right| \leq \rho \nu(\gamma) / 2$ and $\left|z_{j}-\gamma(y)\right| \leq \rho \nu(\gamma) / 2$. Then by the triangle inequality,

$$
|1-\gamma(y-x)|=|\gamma(x)-\gamma(y)| \leq \rho \nu(\gamma)
$$

and so $z=y-x \in \operatorname{Bohr}(\rho \cdot \nu)$.
Definition 6.3 (Regularity). We say $\nu: \widehat{G} \rightarrow \mathbb{R}$ is regular if, with $d=\operatorname{rk}(\nu)$, for all $\kappa \in \mathbb{R}$ with $|\kappa| \leq 1 / 100 d$ we have

$$
(1-100 d|\kappa|) \leq \frac{|\operatorname{Bohr}((1+\kappa) \nu)|}{|\operatorname{Bohr}(\nu)|} \leq(1+100 d|\kappa|)
$$

Lemma 6.4. For any $\nu: \widehat{G} \rightarrow \mathbb{R}$ there exists $\rho \in\left[\frac{1}{2}, 1\right]$ such that $\rho \cdot \nu$ is regular.

Proof. To do.
Lemma 6.5. If $B$ is a regular Bohr set of rank d and $\mu: G \rightarrow \mathbb{R}_{\geq 0}$ is supported on $B_{\rho}$, with $\rho \in(0,1)$, then

$$
\left\|\mu_{B} * \mu-\mu_{B}\right\|_{1} \ll \rho d\|\mu\|_{1} .
$$

Proof. To do.
Lemma 6.6. There is a constant $c>0$ such that the following holds. Let $B$ be a regular Bohr set of rank d and $L \geq 1$ be any integer. If $\nu: G \rightarrow \mathbb{R}_{\geq 0}$ is supported on $L B_{\rho}$, where $\rho \leq c / L d$, and $\|\nu\|_{1}=1$, then

$$
\mu_{B} \leq 2 \mu_{B_{1+L \rho}} * \nu
$$

Proof. To do.
Lemma 6.7. There is a constant $c>0$ such that the following holds. Let $B$ be a regular Bohr set of rank d, suppose $A \subseteq B$ has density $\alpha$, let $\epsilon>0$, and suppose $B^{\prime}, B^{\prime \prime} \subseteq B_{\rho}$ where $\rho \leq c \alpha \epsilon / d$. Then either

1. there is some translate $A^{\prime}$ of $A$ such that $\left|A^{\prime} \cap B^{\prime}\right| \geq(1-\epsilon) \alpha\left|B^{\prime}\right|$ and $\left|A^{\prime} \cap B^{\prime \prime}\right| \geq$ $(1-\epsilon) \alpha\left|B^{\prime \prime}\right|$, or
2. $\left\|1_{A} * \mu_{B^{\prime}}\right\|_{\infty} \geq(1+\epsilon / 2) \alpha$, or
3. $\left\|1_{A} * \mu_{B^{\prime \prime}}\right\|_{\infty} \geq(1+\epsilon / 2) \alpha$.

Proof. To do.

## Chapter 7

## The integer case

Theorem 7.1. There is a constant $c>0$ such that the following holds. Let $\epsilon>0$ and $B, B^{\prime} \subseteq G$ be regular Bohr sets of rank d. Suppose that $A_{1} \subseteq B$ with density $\alpha_{1}$ and $A_{2}$ is such that there exists $x$ with $A_{2} \subseteq B^{\prime}-x$ with density $\alpha_{2}$. Let $S$ be any set with $|S| \leq 2|B|$. There is a regular Bohr set $B^{\prime \prime} \subseteq B^{\prime}$ of rank at most

$$
d+O_{\epsilon}\left(\mathcal{L} \alpha_{1}{ }^{3} \mathcal{L} \alpha_{2}\right)
$$

and size

$$
\left|B^{\prime \prime}\right| \geq \exp \left(-O_{\epsilon}\left(d \mathcal{L} \alpha_{1} \alpha_{2} / d+\mathcal{L} \alpha_{1}^{3} \mathcal{L} \alpha_{2} \mathcal{L} \alpha_{1} \alpha_{2} / d\right)\right)\left|B^{\prime}\right|
$$

such that

$$
\left|\left\langle\mu_{B^{\prime}} * \mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S}\right\rangle-\left\langle\mu_{A_{1}} \circ \mu_{A_{2}}, 1_{S}\right\rangle\right| \leq \epsilon
$$

Proof. To do.
Proposition 7.2. There is a constant $c>0$ such that the following holds. Let $\epsilon>0$ and $p \geq 2$ be an integer. Let $B \subseteq G$ be a regular Bohr set and $A \subseteq B$ with relative density $\alpha$. Let $\nu: G \rightarrow \mathbb{R}_{\geq 0}$ be supported on $B_{\rho}$, where $\rho \leq c \epsilon \alpha / \operatorname{rank}(B)$, such that $\|\nu\|_{1}=1$ and $\hat{\nu} \geq 0$. If

$$
\left\|\left(\mu_{A}-\mu_{B}\right) \circ\left(\mu_{A}-\mu_{B}\right)\right\|_{p(\nu)} \geq \epsilon \mu(B)^{-1}
$$

then there exists $p^{\prime} \ll_{\epsilon} p$ such that

$$
\left\|\mu_{A} \circ \mu_{A}\right\|_{p^{\prime}(\nu)} \geq\left(1+\frac{1}{4} \epsilon\right) \mu(B)^{-1} .
$$

Proof. To do.
Proposition 7.3. There is a constant $c>0$ such that the following holds. Let $p \geq 2$ be an even integer. Let $f: G \rightarrow \mathbb{R}$, let $B \subseteq G$ and $B^{\prime}, B^{\prime \prime} \subseteq B_{c / \operatorname{rank}(B)}$ all be regular Bohr sets. Then

$$
\|f \circ f\|_{p\left(\mu_{B^{\prime}} \circ \mu_{B^{\prime}} * \mu_{B^{\prime \prime}} \circ \mu_{B^{\prime \prime}}\right)} \geq \frac{1}{2}\|f * f\|_{p\left(\mu_{B}\right)}
$$

Proof. To do,
Proposition 7.4. There is a constant $c>0$ such that the following holds. Let $\epsilon>0$. Let $B \subseteq G$ be a regular Bohr set and $A \subseteq B$ with relative density $\alpha$, and let $B^{\prime} \subseteq B_{c \epsilon \alpha / \operatorname{rank}(B)}$ be a regular Bohr set and $C \subseteq B^{\prime}$ with relative density $\gamma$. Either

1. $\left|\left\langle\mu_{A} * \mu_{A}, \mu_{C}\right\rangle-\mu(B)^{-1}\right| \leq \epsilon \mu(B)^{-1}$ or
2. there is some $p \ll \mathcal{L} \gamma$ such that $\left\|\left(\mu_{A}-\mu_{B}\right) *\left(\mu_{A}-\mu_{B}\right)\right\|_{p\left(\mu_{B^{\prime}}\right)} \geq \frac{1}{2} \epsilon \mu(B)^{-1}$.

Proof. To do.
Proposition 7.5. There is a constant $c>0$ such that the following holds. Let $\epsilon>0$ and $p, k \geq 1$ be integers such that $(k,|G|)=1$. Let $B, B^{\prime}, B^{\prime \prime} \subseteq G$ be regular Bohr sets of rank $d$ such that $B^{\prime \prime} \subseteq B_{c / d}^{\prime}$ and $A \subseteq B$ with relative density $\alpha$. If

$$
\left\|\mu_{A} \circ \mu_{A}\right\|_{p\left(\mu_{k \cdot B^{\prime}} \circ \mu_{k \cdot B^{\prime} *} \mu_{\left.k \cdot B^{\prime \prime} \circ \mu_{k \cdot B^{\prime \prime}}\right)} \geq(1+\epsilon) \mu(B)^{-1}, ., ~\right.}
$$

then there is a regular Bohr set $B^{\prime \prime \prime} \subseteq B^{\prime \prime}$ of rank at most

$$
\operatorname{rank}\left(B^{\prime \prime \prime}\right) \leq d+O_{\epsilon}\left(\mathcal{L} \alpha^{4} p^{4}\right)
$$

and size

$$
\left|B^{\prime \prime \prime}\right| \geq \exp \left(-O_{\epsilon}\left(d p \mathcal{L} \alpha / d+\mathcal{L} \alpha^{5} p^{5}\right)\right)\left|B^{\prime \prime}\right|
$$

such that

$$
\left\|\mu_{B^{\prime \prime \prime}} * \mu_{A}\right\|_{\infty} \geq(1+c \epsilon) \mu(B)^{-1}
$$

Proof. To do.
Theorem 7.6. There is a constant $c>0$ such that the following holds. Let $\epsilon, \delta \in(0,1)$ and $p, k \geq 1$ be integers such that $(k,|G|)=1$. For any $A \subseteq G$ with density $\alpha$ there is a regular Bohr set B with

$$
d=\operatorname{rank}(B)=O_{\epsilon}\left(\mathcal{L} \alpha^{5} p^{4}\right) \quad \text { and } \quad|B| \geq \exp \left(-O_{\epsilon, \delta}\left(\mathcal{L} \alpha^{6} p^{5} \mathcal{L} \alpha / p\right)\right)|G|
$$

and some $A^{\prime} \subseteq(A-x) \cap B$ for some $x \in G$ such that

1. $\left|A^{\prime}\right| \geq(1-\epsilon) \alpha|B|$,
2. $\left|A^{\prime} \cap B^{\prime}\right| \geq(1-\epsilon) \alpha\left|B^{\prime}\right|$, where $B^{\prime}=B_{\rho}$ is a regular Bohr set with $\rho \in\left(\frac{1}{2}, 1\right) \cdot c \delta \alpha / d$, and
3. 

$$
\left\|\mu_{A^{\prime}} \circ \mu_{A^{\prime}}\right\|_{p\left(\mu_{k \cdot B^{\prime \prime}} \circ \mu_{k \cdot B^{\prime \prime} *} * \mu_{k \cdot B^{\prime \prime \prime}} \circ \mu_{k \cdot B^{\prime \prime \prime}}\right)}<(1+\epsilon) \mu(B)^{-1}
$$

for any regular Bohr sets $B^{\prime \prime}=B_{\rho^{\prime}}^{\prime}$ and $B^{\prime \prime \prime}=B_{\rho^{\prime \prime}}^{\prime \prime}$ satisfying $\rho^{\prime}, \rho^{\prime \prime} \in\left(\frac{1}{2}, 1\right) \cdot c \delta \alpha / d$.
Proof. To do.
Theorem 7.7. There is a constant $c>0$ such that the following holds. Let $\delta, \epsilon \in(0,1)$, let $p \geq 1$ and let $k$ be a positive integer such that $(k,|G|)=1$. There is a constant $C=C(\epsilon, \delta, k)>0$ such that the following holds.

For any finite abelian group $G$ and any subset $A \subseteq G$ with $|A|=\alpha|G|$ there exists a regular Bohr set $B$ with

$$
\operatorname{rank}(B) \leq C p^{4} \log (2 / \alpha)^{5}
$$

and

$$
|B| \geq \exp \left(-C p^{5} \log (2 p / \alpha) \log (2 / \alpha)^{6}\right)|G|
$$

and $A^{\prime} \subseteq(A-x) \cap B$ for some $x \in G$ such that

1. $\left|A^{\prime}\right| \geq(1-\epsilon) \alpha|B|$,
2. $\left|A^{\prime} \cap B^{\prime}\right| \geq(1-\epsilon) \alpha\left|B^{\prime}\right|$, where $B^{\prime}=B_{\rho}$ is a regular Bohr set with $\rho \in\left(\frac{1}{2}, 1\right) \cdot c \delta \alpha / d k$, and
3. 

$$
\left\|\left(\mu_{A^{\prime}}-\mu_{B}\right) *\left(\mu_{A^{\prime}}-\mu_{B}\right)\right\|_{p\left(\mu_{k \cdot B^{\prime}}\right)} \leq \epsilon \frac{|G|}{|B|}
$$

Proof. To do.
Theorem 7.8. If $A \subseteq\{1, \ldots, N\}$ has size $|A|=\alpha N$, then $A$ contains at least

$$
\exp \left(-O\left(\mathcal{L} \alpha^{12}\right)\right) N^{2}
$$

many three-term arithmetic progressions.
Proof. To do.
Theorem 7.9. If $A \subseteq\{1, \ldots, N\}$ contains no non-trivial three-term arithmetic progressions then

$$
|A| \leq \frac{N}{\exp \left(-c(\log N)^{1 / 12}\right)}
$$

for some constant $c>0$.
Proof. To do.

