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Chapter 1

Almost-Periodicity

Lemma 1.1 (Marcinkiewicz-Zygmund inequality). Let 𝑚 ≥ 1. If 𝑓 ∶ 𝐺 → ℝ is such that
𝔼𝑥𝑓(𝑥) = 0 and |𝑓(𝑥)| ≤ 2 for all 𝑥 then

𝔼𝑥1,…,𝑥𝑛
∣

𝑛
∑
𝑖=1

𝑓(𝑥𝑖)∣
2𝑚

≤ (4𝑚𝑛)𝑚.

Proof. Let 𝑆 be the left-hand side. Since 0 = 𝔼𝑦𝑓(𝑦) we have, by the triangle inequality,
and Hölder’s inequality,

𝑆 = 𝔼𝑥1,…,𝑥𝑛
∣∑

𝑖
𝑓(𝑥𝑖) − 𝔼𝑦𝑖

𝑓(𝑦𝑖)∣
2𝑚

= 𝔼𝑥1,…,𝑥𝑛
∣𝔼𝑦𝑖

(∑
𝑖

𝑓(𝑥𝑖) − 𝑓(𝑦𝑖))∣
2𝑚

≤ 𝔼𝑥1,…,𝑦𝑛
∣∑

𝑖
𝑓(𝑥𝑖) − 𝑓(𝑦𝑖)∣

2𝑚

.

Changing the role of 𝑥𝑖 and 𝑦𝑖 makes no difference here, but multiplies the 𝑖 summand by
{−1, +1}, and therefore for any 𝜖𝑖 ∈ {−1, +1},

𝑆 ≤ 𝔼𝑥1,…,𝑦𝑛
∣∑

𝑖
𝜖𝑖(𝑓(𝑥𝑖) − 𝑓(𝑦𝑖))∣

2𝑚

.

In particular, if we sample 𝜖𝑖 ∈ {−1, +1} uniformly at random, then

𝑆 ≤ 𝔼𝜖𝑖
𝔼𝑥1,…,𝑦𝑛

∣∑
𝑖

𝜖𝑖(𝑓(𝑥𝑖) − 𝑓(𝑦𝑖))∣
2𝑚

.

We now change the order of expectation and consider the expectation over just 𝜖𝑖, viewing
the 𝑓(𝑥𝑖) − 𝑓(𝑦𝑖) = 𝑧𝑖, say, as fixed quantities. For any 𝑧𝑖 we can expand 𝔼𝜖𝑖

|∑𝑖 𝜖𝑖𝑧𝑖|2𝑚 and
then bound it from above, using the triangle inequality and |𝑧𝑖| ≤ 4, by

42𝑚 ∑
𝑘1+⋯+𝑘𝑛=2𝑚

( 2𝑚
𝑘1, … , 𝑘𝑛

) ∣𝔼𝜖𝑘1
1 ⋯ 𝜖𝑘𝑛𝑛 ∣ .

The inner expectation vanishes unless each 𝑘𝑖 is even, when it is trivially one. Therefore the
above quantity is exactly

∑
𝑙1+⋯+𝑙𝑛=𝑚

( 2𝑚
2𝑙1, … , 2𝑙𝑛

) ≤ 𝑚𝑚𝑛𝑚,
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since for any 𝑙1 + ⋯ + 𝑙𝑛 = 𝑚,

( 2𝑚
2𝑙1, … , 2𝑙𝑛

) ≤ 𝑚𝑚( 𝑚
𝑙1, … , 𝑙𝑛

).

This can be seen, for example, by writing both sides out using factorials, yielding

(2𝑚)!
(2𝑙1)! ⋯ (2𝑙𝑛)! ≤ (2𝑚)!

2𝑚𝑚!
𝑚!

𝑙1! ⋯ 𝑙𝑛! ≤ 𝑚𝑚 𝑚!
𝑙1! ⋯ 𝑙𝑛! .

Lemma 1.2 (Complex-valued Marcinkiewicz-Zygmund inequality). Let 𝑚 ≥ 1. If 𝑓 ∶ 𝐺 →
ℂ is such that 𝔼𝑥𝑓(𝑥) = 0 and |𝑓(𝑥)| ≤ 2 for all 𝑥 then

𝔼𝑥1,…,𝑥𝑛
∣

𝑛
∑
𝑖=1

𝑓(𝑥𝑖)∣
2𝑚

≤ (16𝑚𝑛)𝑚.

Proof. Test.

Lemma 1.3. Let 𝜖 > 0 and 𝑚 ≥ 1. Let 𝐴 ⊆ 𝐺 and 𝑓 ∶ 𝐺 → ℂ. If 𝑘 ≥ 64𝑚𝜖−2 then the set

𝐿 = { ⃗𝑎 ∈ 𝐴𝑘 ∶ ‖ 1
𝑘

𝑘
∑
𝑖=1

𝑓(𝑥 − 𝑎𝑖) − 𝜇𝐴 ∗ 𝑓‖2𝑚 ≤ 𝜖‖𝑓‖2𝑚}.

has size at least |𝐴|𝑘/2.

Proof. Note that if 𝑎 ∈ 𝐴 is chosen uniformly at random then, for any fixed 𝑥 ∈ 𝐺,

𝔼𝑓(𝑥 − 𝑎𝑖) = 1
|𝐴| ∑

𝑎∈𝐴
𝑓(𝑥 − 𝑎) = 1

|𝐴|1𝐴 ∗ 𝑓(𝑥) = 𝜇𝐴 ∗ 𝑓(𝑥).

Therefore, if we choose 𝑎1, … , 𝑎𝑘 ∈ 𝐴 independently uniformly at random, for any fixed
𝑥 ∈ 𝐺 and 1 ≤ 𝑖 ≤ 𝑘, the random variable 𝑓(𝑥 − 𝑎𝑖) − 𝑓 ∗ 𝜇𝐴(𝑥) has mean zero. By the
Marcinkiewicz-Zygmund inequality Lemma 1.1, therefore,

𝔼 ∣1𝑘 ∑
𝑖

𝑓(𝑥 − 𝑎𝑖) − 𝑓 ∗ 𝜇𝐴(𝑥)∣
2𝑚

≤

(16𝑚/𝑘)𝑚𝑘−1𝔼 ∑
𝑖

|𝑓(𝑥 − 𝑎𝑖) − 𝑓 ∗ 𝜇𝐴(𝑥)|2𝑚 .

We now sum both sides over all 𝑥 ∈ 𝐺. By the triangle inequality, for any fixed 1 ≤ 𝑖 ≤ 𝑘
and 𝑎𝑖 ∈ 𝐴,

∑
𝑥∈𝐺

|𝑓(𝑥 − 𝑎𝑖) − 𝑓 ∗ 𝜇𝐴(𝑥)|2𝑚 ≤ 22𝑚−1 ∑
𝑥∈𝐺

|𝑓(𝑥 − 𝑎𝑖)|
2𝑚 + ∑

𝑥∈𝐺
|𝑓 ∗ 𝜇𝐴(𝑥)|2𝑚

≤ 22𝑚−1 (‖𝑓‖2𝑚
2𝑚 + ‖𝑓 ∗ 𝜇𝐴‖2𝑚

2𝑚) .

We note that ‖𝜇𝐴‖1 = 1
|𝐴| ∑𝑥∈𝐴 1𝐴(𝑥) = |𝐴| / |𝐴| = 1, and hence by Young’s inequality,

‖𝑓 ∗ 𝜇𝐴‖2𝑚 ≤ ‖𝑓‖2𝑚, and so

∑
𝑥∈𝐺

|𝑓(𝑥 − 𝑎𝑖) − 𝑓 ∗ 𝜇𝐴(𝑥)|2𝑚 ≤ 22𝑚‖𝑓‖2𝑚
2𝑚.
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It follows that
𝔼𝑎1,…,𝑎𝑘∈𝐴‖ 1

𝑘 ∑
𝑖

𝜏𝑎𝑖
𝑓 − 𝑓 ∗ 𝜇𝐴‖2𝑚

2𝑚 ≤ (64𝑚/𝑘)𝑚‖𝑓‖2𝑚
2𝑚.

In particular, if 𝑘 ≥ 64𝜖−2𝑚 then the right-hand side is at most ( 𝜖
2 ‖𝑓‖2𝑚)2𝑚 as required.

Lemma 1.4. Let 𝐴 ⊆ 𝐺 and 𝑓 ∶ 𝐺 → ℂ. Let 𝜖 > 0 and 𝑚 ≥ 1 and 𝑘 ≥ 1. Let

𝐿 = { ⃗𝑎 ∈ 𝐴𝑘 ∶ ‖ 1
𝑘

𝑘
∑
𝑖=1

𝑓(𝑥 − 𝑎𝑖) − 𝜇𝐴 ∗ 𝑓‖2𝑚 ≤ 𝜖‖𝑓‖2𝑚}.

If 𝑡 ∈ 𝐺 is such that ⃗𝑎 ∈ 𝐿 and ⃗𝑎 + (𝑡, … , 𝑡) ∈ 𝐿 then

‖𝜏𝑡(𝜇𝐴 ∗ 𝑓) − 𝜇𝐴 ∗ 𝑓‖2𝑚 ≤ 2𝜖‖𝑓‖2𝑚.

Proof. Test.

Lemma 1.5. Let 𝐴 ⊆ 𝐺 and 𝑘 ≥ 1 and 𝐿 ⊆ 𝐴𝑘. Then there exists some ⃗𝑎 ∈ 𝐿 such that

#{𝑡 ∈ 𝐺 ∶ ⃗𝑎 + (𝑡, … , 𝑡) ∈ 𝐿} ≥ |𝐿|
|𝐴 + 𝑆|𝑘 |𝑆|.

Proof. Test.

Theorem 1.6 (𝐿𝑝 almost periodicity). Let 𝜖 ∈ (0, 1] and 𝑚 ≥ 1. Let 𝐾 ≥ 2 and 𝐴, 𝑆 ⊆ 𝐺
with |𝐴 + 𝑆| ≤ 𝐾|𝐴|. Let 𝑓 ∶ 𝐺 → ℂ. There exists 𝑇 ⊆ 𝐺 such that

|𝑇 | ≥ 𝐾−512𝑚𝜖−2 |𝑆|

such that for any 𝑡 ∈ 𝑇 we have

‖𝜏𝑡(𝜇𝐴 ∗ 𝑓) − 𝜇𝐴 ∗ 𝑓‖2𝑚 ≤ 𝜖‖𝑓‖2𝑚.

Proof. Test.

Theorem 1.7 (𝐿∞ almost periodicity). Let 𝜖 ∈ (0, 1]. Let 𝐾 ≥ 2 and 𝐴, 𝑆 ⊆ 𝐺 with
|𝐴 + 𝑆| ≤ 𝐾|𝐴|. Let 𝐵, 𝐶 ⊆ 𝐺. Let 𝜂 = min(1, |𝐶|/|𝐵|). There exists 𝑇 ⊆ 𝐺 such that

|𝑇 | ≥ 𝐾−4096⌈ℒ𝜂⌉𝜖−2 |𝑆|

such that for any 𝑡 ∈ 𝑇 we have

‖𝜏𝑡(𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶) − 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶‖∞ ≤ 𝜖.

Proof. Let 𝑇 be as given in 1.6 with 𝑓 = 1𝐵 and 𝑚 = ⌈ℒ𝜂⌉ and 𝜖 = 𝜖/𝑒. (The size bound
on 𝑇 follows since 𝑒2 ≤ 8.) Fix 𝑡 ∈ 𝑇 and let 𝐹 = 𝜏𝑡(𝜇𝐴 ∗ 1𝐵) − 𝜇𝐴 ∗ 1𝐵. We have, for any
𝑥 ∈ 𝐺,

(𝜏𝑡(𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶) − 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶)(𝑥) = 𝐹 ∗ 𝜇𝐶(𝑥) = ∑
𝑦

𝐹(𝑦)𝜇𝐶(𝑥 − 𝑦) = ∑
𝑦

𝐹(𝑦)𝜇𝑥−𝐶(𝑦).

By Hölder’s inequality, this is (in absolute value), for any 𝑚 ≥ 1,

‖𝐹‖2𝑚‖𝜇𝑥−𝐶‖1+ 1
2𝑚−1

.
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By the construction of 𝑇 the first factor is at most 𝜖
𝑒 ‖1𝐵‖2𝑚 = 𝜖

𝑒 |𝐵|1/2𝑚. We have by
calculation

‖𝜇𝑥−𝐶‖1+ 1
2𝑚−1

= |𝑥 − 𝐶|−1/2𝑚 = |𝐶|−1/2𝑚.
Therefore we have shown that

‖𝜏𝑡(𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶) − 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶‖∞ ≤ 𝜖
𝑒(|𝐶|/|𝐵|)−1/2𝑚.

The claim now follows since, by choice of 𝑚,

(|𝐶|/|𝐵|)−1/2𝑚 ≤ 𝑒

(dividing into cases as to whether 𝜂 = 1 or not).

Theorem 1.8. Let 𝜖 ∈ (0, 1] and 𝑘 ≥ 1. Let 𝐾 ≥ 2 and 𝐴, 𝑆 ⊆ 𝐺 with |𝐴 + 𝑆| ≤ 𝐾|𝐴|. Let
𝐵, 𝐶 ⊆ 𝐺. Let 𝜂 = min(1, |𝐶|/|𝐵|). There exists 𝑇 ⊆ 𝐺 such that

|𝑇 | ≥ 𝐾−4096⌈ℒ𝜂⌉𝑘2𝜖−2 |𝑆|

such that
‖𝜇(𝑘)

𝑇 ∗ 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶 − 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶‖∞ ≤ 𝜖.
Proof. Let 𝑇 be as in Theorem 1.7 with 𝜖 replaced by 𝜖/𝑘. Note that, for any 𝑥 ∈ 𝐺,

𝜇(𝑘)
𝑇 ∗ 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶(𝑥) = 1

|𝑇 |𝑘 ∑
𝑡1,…,𝑡𝑘∈𝑇

𝜏𝑡1+⋯+𝑡𝑘
𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶(𝑥).

It therefore suffices (by the triangle inequality) to show, for any fixed 𝑥 ∈ 𝐺 and 𝑡1, … , 𝑡𝑘 ∈ 𝑇 ,
that with 𝐹 = 𝜇𝐴 ∗ 1𝐵 ∗ 𝜇𝐶 , we have

|𝜏𝑡1+⋯+𝑡𝑘
𝐹(𝑥) − 𝐹(𝑥)| ≤ 𝜖.

This follows by the triangle inequality applied 𝑘 times if we knew that, for 1 ≤ 𝑙 ≤ 𝑘,

|𝜏𝑡1+⋯+𝑡𝑙
𝐹(𝑥) − 𝜏𝑡1+⋯+𝑡𝑙−1

𝐹(𝑥)| ≤ 𝜖/𝑘.

We can write the left-hand side as

|𝜏𝑡1+⋯+𝑡𝑙
𝐹(𝑥) − 𝜏𝑡1+⋯+𝑡𝑙−1

𝐹(𝑥)| = |𝜏𝑡𝑙
𝐹(𝑥 − 𝑡1 − ⋯ − 𝑡 − 𝑙 − 1) − 𝐹(𝑥 − 𝑡1 − ⋯ − 𝑡 − 𝑙 − 1)|.

The right-hand side is at most
‖𝜏𝑡𝑙

𝐹 − 𝐹‖∞

and we are done by choice of 𝑇 .
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Chapter 2

Chang’s lemma

Definition 2.1 (Dissociation). We say that 𝐴 ⊆ 𝐺 is dissociated if, for any 𝑚 ≥ 1, and
any 𝑥 ∈ 𝐺, there is at most one 𝐴′ ⊂ 𝐴 of size |𝐴′| = 𝑚 such that

∑
𝑎∈𝐴′

𝑎 = 𝑥.

Lemma 2.2 (Rudin’s exponential inequality). If the discrete Fourier transform of 𝑓 ∶ 𝐺 ⟶
ℂ has dissociated support, then

𝔼 exp(ℜ𝑓) ≤ exp (‖𝑓‖2
2

2 )

It follows that 𝔼
𝑥

𝑒|𝑓(𝑥)| ≤ 2𝑒‖𝑓‖2
2/2.

Proof. Using the convexity of 𝑡 ↦ 𝑒𝑡𝑥 (for all 𝑥 ≥ 0 and 𝑡 ∈ [−1, 1]) we have

𝑒𝑡𝑥 ≤ cosh(𝑥) + 𝑡 sinh(𝑥).

It follows (taking 𝑥 = |𝑧| and 𝑡 = ℜ(𝑧)/|𝑧|) that, for any 𝑧 ∈ ℂ,

𝑒ℜ𝑧 ≤ cosh|𝑧| + ℜ(𝑧/|𝑧|) sinh|𝑧|.

In particular, if 𝑐𝛾 ∈ ℂ with |𝑐𝛾| = 1 is such that ̂𝑓(𝛾) = 𝑐𝛾| ̂𝑓(𝛾)|, then

𝑒ℜ𝑓(𝑥) = exp (ℜ ∑
𝛾∈Γ

̂𝑓(𝛾)𝛾(𝑥))

= ∏
𝛾∈Γ

exp (ℜ ̂𝑓(𝛾)𝛾(𝑥))

≤ ∏
𝛾∈Γ

(cosh| ̂𝑓(𝛾)| + ℜ𝑐𝛾𝛾(𝑥) sinh| ̂𝑓(𝛾)|) .

Therefore 𝔼
𝑥

𝑒ℜ𝑓(𝑥) ≤ 𝔼
𝑥

∏
𝛾∈Γ

(cosh| ̂𝑓(𝛾)| + ℜ𝑐𝛾𝛾(𝑥) sinh| ̂𝑓(𝛾)|) .
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Using ℜ𝑧 = (𝑧 + 𝑧)/2 the product here can be expanded as the sum of

∏
𝛾∈Γ2

𝑐𝛾
2 ∏

𝛾∈Γ3

𝑐𝛾
2 ( ∏

𝛾∈Γ1

cosh| ̂𝑓(𝛾)|) ( ∏
𝛾∈Γ2∪Γ3

sinh| ̂𝑓(𝛾)|) ( ∑
𝛾∈Γ2

𝛾 − ∑
𝜆∈Γ3

𝜆) (𝑥)

as Γ1 ⊔ Γ2 ⊔ Γ3 = Γ ranges over all partitions of Γ into three disjoint parts. Using the
definition of dissociativity we see that

∑
𝛾∈Γ2

𝛾 − ∑
𝜆∈Γ3

𝜆 ≠ 0

unless Γ2 = Γ3 = ∅. In particular summing this term over all 𝑥 ∈ 𝐺 gives 0. Therefore the
only term that survives averaging over 𝑥 is when Γ1 = Γ, and so

𝔼
𝑥

𝑒ℜ𝑓(𝑥) ≤ ∏
𝛾∈Γ

cosh| ̂𝑓(𝛾)|.

The conclusion now follows using cosh(𝑥) ≤ 𝑒𝑥2/2 and ∑𝛾∈Γ| ̂𝑓(𝛾)|2 = ‖𝑓‖2
2. The second

conclusion follows by applying it to 𝑓(𝑥) and −𝑓(𝑥) and using

𝑒|𝑦| ≤ 𝑒𝑦 + 𝑒−𝑦.

Lemma 2.3 (Rudin’s inequality). If the discrete Fourier transform of 𝑓 ∶ 𝐺 ⟶ ℂ has
dissociated support and 𝑝 ≥ 2 is an integer, then ‖𝑓‖𝑝 ≤ 4√𝑝𝑒‖𝑓‖2.

Proof. It is enough to show that ‖ℜ𝑓‖𝑝 ≤ 2√𝑝𝑒‖𝑓‖2 as then

‖𝑓‖𝑝 ≤ ‖ℜ𝑓‖𝑝 + ‖𝑖ℑ𝑓‖𝑝 = ‖ℜ𝑓‖𝑝 + ‖ℜ(−𝑖𝑓)‖𝑝 ≤ 4√𝑝𝑒‖𝑓‖2

If 𝑓 = 0, the result is obvious. So assume 𝑓 ≠ 0. ‖𝑓‖2 > 0, so WLOG ‖𝑓‖2 = √𝑝.
Rudin’s exponential inequality for 𝑓 becomes 𝔼 exp |ℜ𝑓| ≤ 2 exp( 𝑝

2 ) = (2√𝑒)𝑝. Using
𝑥𝑝
𝑝! ≤ 𝑒𝑥 for positive 𝑥, we get

‖ℜ𝑓‖𝑝
𝑝

𝑝𝑝 ≤ ‖ℜ𝑓‖𝑝
𝑝

𝑝! = 𝔼 |ℜ𝑓|𝑝
𝑝! ≤ 𝔼 exp |ℜ𝑓|

Rearranging, ‖ℜ𝑓‖𝑝 ≤ 2𝑝√𝑒 = 2√𝑝𝑒‖𝑓‖2.

Definition 2.4 (Large spectrum). Let 𝐺 be a finite abelian group and 𝑓 ∶ 𝐺 → ℂ. Let
𝜂 ∈ ℝ. The 𝜂-large spectrum is defined to be

Δ𝜂(𝑓) = {𝛾 ∈ 𝐺 ∶ | ̂𝑓(𝛾)| ≥ 𝜂‖𝑓‖1}.

Definition 2.5 (Weighted energy). Let Δ ⊆ 𝐺 and 𝑚 ≥ 1. Let 𝜈 ∶ 𝐺 → ℂ. Then

𝐸2𝑚(Δ; 𝜈) = ∑
𝛾1,…,𝛾2𝑚∈Δ

| ̂𝜈(𝛾1 + ⋯ − 𝛾2𝑚)| .

Definition 2.6 (Energy). Let 𝐺 be a finite abelian group and 𝐴 ⊆ 𝐺. Let 𝑚 ≥ 1. We
define

𝐸2𝑚(𝐴) = ∑
𝑎1,…,𝑎2𝑚∈𝐴

1𝑎1+⋯−𝑎2𝑚=0.

6



Lemma 2.7. Let 𝐺 be a finite abelian group and 𝑓 ∶ 𝐺 → ℂ. Let 𝜈 ∶ 𝐺 → ℝ≥0 be such that
whenever |𝑓| ≠ 0 we have 𝜈 ≥ 1. Let Δ ⊆ Δ𝜂(𝑓). Then, for any 𝑚 ≥ 1.

𝜂2𝑚 ‖𝑓‖2
1

‖𝑓‖2
2

|Δ|2𝑚 ≤ 𝐸2𝑚(Δ; 𝜈).

Proof. By definition of Δ𝜂(𝑓) we know that

𝜂‖𝑓‖1 |Δ| ≤ ∑
𝛾∈Δ

| ̂𝑓(𝛾)|.

There exists some 𝑐𝛾 ∈ ℂ with |𝑐𝛾| = 1 for all 𝛾 such that

| ̂𝑓(𝛾)| = 𝑐𝛾 ̂𝑓(𝛾) = 𝑐𝛾 ∑
𝑥∈𝐺

𝑓(𝑥)𝛾(𝑥).

Interchanging the sums, therefore,

𝜂‖𝑓‖1 |Δ| ≤ ∑
𝑥∈𝐺

𝑓(𝑥) ∑
𝛾∈Δ

𝑐𝛾𝛾(𝑥).

By Hölder’s inequality the right-hand side is at most

(∑
𝑥

|𝑓(𝑥)|)
1−1/𝑚

(∑
𝑥

|𝑓(𝑥)| ∣∑
𝛾∈Δ

𝑐𝛾𝛾(𝑥)∣
𝑚

)
1/𝑚

.

Taking 𝑚th powers, therefore, we have

𝜂𝑚 |Δ|𝑚 ‖𝑓‖1 ≤ ∑
𝑥

|𝑓(𝑥)| ∣∑
𝛾∈Δ

𝑐𝛾𝛾(𝑥)∣
𝑚

.

By assumption we can bound |𝑓(𝑥)| ≤ |𝑓(𝑥)| 𝜈(𝑥)1/2, and therefore by the Cauchy-Schwarz
inequality the right-hand side is bounded above by

‖𝑓‖2
⎛⎜
⎝

∑
𝑥

𝜈(𝑥) ∣∑
𝛾∈Δ

𝑐𝛾𝛾(𝑥)∣
2𝑚

⎞⎟
⎠

1/2

.

Squaring and simplifying, we deduce that

𝜂2𝑚 |Δ|2𝑚 ‖𝑓‖2
1

‖𝑓‖2
2

≤ ∑
𝑥

𝜈(𝑥) ∣∑
𝛾∈Δ

𝑐𝛾𝛾(𝑥)∣
2𝑚

.

Expanding out the power, the right-hand side is equal to

∑
𝑥

𝜈(𝑥) ∑
𝛾1,…,𝛾2𝑚

𝑐𝛾1
⋯ 𝑐𝛾2𝑚

(𝛾1 ⋯ 𝛾2𝑚)(𝑥).

Changing the order of summation this is equal to

∑
𝛾1,…,𝛾2𝑚

𝑐𝛾1
⋯ 𝑐𝛾2𝑚

̂𝜈(𝛾1 ⋯ 𝛾2𝑚).

The result follows by the triangle inequality.
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Lemma 2.8. Let 𝐺 be a finite abelian group and 𝑓 ∶ 𝐺 → ℂ. Let Δ ⊆ Δ𝜂(𝑓). Then, for
any 𝑚 ≥ 1.

𝑁−1𝜂2𝑚 ‖𝑓‖2
1

‖𝑓‖2
2

|Δ|2𝑚 ≤ 𝐸2𝑚(Δ).

Proof. Apply Lemma 2.7 with 𝜈 ≡ 1, and use the fact that ∑𝑥 𝜆(𝑥) is 𝑁 if 𝜆 ≡ 1 and 0
otherwise.

Lemma 2.9. If 𝐴 ⊂ 𝐺 and 𝑚 ≥ 1 then

𝐸2𝑚(𝐴) = ∑
𝑥

1(𝑚)
𝐴 (𝑥)2.

Proof. Expand out definitions.

Lemma 2.10. If 𝐴 ⊆ 𝐺 is dissociated then 𝐸2𝑚(𝐴) ≤ (32𝑒𝑚 |𝐴|)𝑚.

Proof. By Lemma 2.9 and Lemma 2.3

𝐸2𝑚(𝐴) = 𝔼
𝛾

∣ ̂1𝐴(𝛾)∣2𝑚

= ‖ ̂1𝐴‖2𝑚
2𝑚

≤ (4
√

2𝑒𝑚)2𝑚‖ ̂1𝐴‖2𝑚
2

= (32𝑒𝑚)𝑚‖1𝐴‖2𝑚
2

= (32𝑒𝑚)𝑚 |𝐴|𝑚

Lemma 2.11. If 𝐴 ⊆ 𝐺 contains no dissociated set with ≥ 𝐾 + 1 elements then there is
𝐴′ ⊆ 𝐴 of size |𝐴′| ≤ 𝐾 such that

𝐴 ⊆ { ∑
𝑎∈𝐴′

𝑐𝑎𝑎 ∶ 𝑐𝑎 ∈ {−1, 0, 1}} .

Proof. Let 𝐴′ ⊆ 𝐴 be a maximal dissociated subset (this exists and is non-empty, since
trivially any singleton is dissociated). We have |𝐴′| ≤ 𝐾 by assumption.

Let 𝑆 be the span on the right-hand side. It is obvious that 𝐴′ ⊆ 𝑆. Suppose that
𝑥 ∈ 𝐴\𝐴′. Then 𝐴′ ∪ {𝑥} is not dissociated by maximality. Therefore there exists some
𝑦 ∈ 𝐺 and two distinct sets 𝐵, 𝐶 ⊆ 𝐴′ ∪ {𝑥} such that

∑
𝑏∈𝐵

𝑏 = 𝑦 = ∑
𝑐∈𝐶

𝑐.

If 𝑥 ∉ 𝐵 and 𝑥 ∉ 𝐶 then this contradicts the dissociativity of 𝐴′. If 𝑥 ∈ 𝐵 and 𝑥 ∈ 𝐶 then
we have

∑
𝑏∈𝐵\𝑥

𝑏 = 𝑦 − 𝑥 = ∑
𝑐∈𝐶\𝑥

𝑐,
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again contradicting the dissociativity of 𝐴′. Without loss of generality, therefore, 𝑥 ∈ 𝐵 and
𝑥 ∉ 𝐶. Therefore

𝑥 = ∑
𝑐∈𝐶

𝑐 − ∑
𝑏∈𝐵\𝑥

𝑏

which is in the span as required.

Theorem 2.12 (Chang’s lemma). Let 𝐺 be a finite abelian group and 𝑓 ∶ 𝐺 → ℂ. Let 𝜂 > 0
and 𝛼 = 𝑁−1‖𝑓‖2

1/‖𝑓‖2
2. There exists some Δ ⊆ Δ𝜂(𝑓) such that

|Δ| ≤ ⌈𝑒ℒ(𝛼)𝜂−2⌉

and

Δ𝜂(𝑓) ⊆ {∑
𝛾∈Δ

𝑐𝛾𝛾 ∶ 𝑐𝛾 ∈ {−1, 0, 1}} .

Proof. By Lemma 2.11 it suffices to show that Δ𝜂(𝑓) contains no dissociated set with at
least

𝐾 = ⌈𝑒ℒ(𝛼)𝜂−2⌉ + 1
many elements. Suppose not, and let Δ ⊆ Δ𝜂(𝑓) be a dissociated set of size 𝐾. Then by
Lemma 2.10 we have, for any 𝑚 ≥ 1,

𝐸2𝑚(Δ) ≤ 𝑚!𝐾𝑚.

On the other hand, by Lemma 2.8,

𝜂2𝑚𝛼𝐾2𝑚 ≤ 𝐸2𝑚(Δ).
Rearranging these bounds, we have

𝐾𝑚 ≤ 𝑚!𝛼−1𝜂−2𝑚 ≤ 𝑚𝑚𝛼−1𝜂−2𝑚.

Therefore 𝐾 ≤ 𝛼−1/𝑚𝑚𝜂−2. This is a contradiction to the choice of 𝐾 if we choose 𝑚 =
ℒ(𝛼), since 𝛼−1/𝑚 ≤ 𝑒.
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Chapter 3

Unbalancing

Lemma 3.1. For any function 𝑓 ∶ 𝐺 → ℝ and integer 𝑘 ≥ 0

𝔼𝑥𝑓 ∘ 𝑓(𝑥)𝑘 ≥ 0.

Proof. Test.

Lemma 3.2. Let 𝜖 ∈ (0, 1) and 𝜈 ∶ 𝐺 → ℝ≥0 be some probability measure such that ̂𝜈 ≥ 0.
Let 𝑓 ∶ 𝐺 → ℝ. If ‖𝑓 ∘ 𝑓‖𝑝(𝜈) ≥ 𝜖 for some 𝑝 ≥ 1 then ‖𝑓 ∘ 𝑓 + 1‖𝑝′(𝜈) ≥ 1 + 1

2 𝜖 for
𝑝′ = 120𝜖−1 log(3/𝜖).
Proof. Up to gaining a factor of 5 in 𝑝′, we can assume that 𝑝 ≥ 5 is an odd integer. Since
the Fourier transforms of 𝑓 and 𝜈 are non-negative,

𝔼𝜈𝑓𝑝 = ̂𝜈 ∗ ̂𝑓 (𝑝)(0𝐺) ≥ 0.

It follows that, since 2 max(𝑥, 0) = 𝑥 + |𝑥| for 𝑥 ∈ ℝ,

2⟨max(𝑓, 0), 𝑓𝑝−1⟩𝜈 = 𝔼𝜈𝑓𝑝 + ⟨|𝑓| , 𝑓𝑝−1⟩𝜈 ≥ ‖𝑓‖𝑝
𝑝(𝜈) ≥ 𝜖𝑝.

Therefore, if 𝑃 = {𝑥 ∶ 𝑓(𝑥) ≥ 0}, then ⟨1𝑃 , 𝑓𝑝⟩𝜈 ≥ 1
2 𝜖𝑝. Furthermore, if 𝑇 = {𝑥 ∈ 𝑃 ∶

𝑓(𝑥) ≥ 3
4 𝜖} then ⟨1𝑃\𝑇 , 𝑓𝑝⟩𝜈 ≤ 1

4 𝜖𝑝, and hence by the Cauchy-Schwarz inequality,

𝜈(𝑇 )1/2‖𝑓‖𝑝
2𝑝(𝜈) ≥ ⟨1𝑇 , 𝑓𝑝⟩𝜈 ≥ 1

4 𝜖𝑝.

On the other hand, by the triangle inequality

‖𝑓‖2𝑝(𝜈) ≤ 1 + ‖𝑓 + 1‖2𝑝(𝜈) ≤ 3,

or else we are done, with 𝑝′ = 2𝑝. Hence 𝜈(𝑇 ) ≥ (𝜖/3)3𝑝. It follows that, for any 𝑝′ ≥ 1,

‖𝑓 + 1‖𝑝′(𝜈) ≥ ⟨1𝑇 , |𝑓 + 1|𝑝
′
⟩1/𝑝′
𝜈 ≥ (1 + 3

4 𝜖)(𝜖/3)3𝑝/𝑝′ .

The desired bound now follows if we choose 𝑝′ = 24𝜖−1 log(3/𝜖)𝑝, using 1 − 𝑥 ≤ 𝑒−𝑥.
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Chapter 4

Dependent random choice

Lemma 4.1. Let 𝑝 ≥ 2 be an even integer. Let 𝐵1, 𝐵2 ⊆ 𝐺 and 𝜇 = 𝜇𝐵1
∘ 𝜇𝐵2

. For any
finite set 𝐴 ⊆ 𝐺 and function 𝑓 ∶ 𝐺 → ℝ≥0 there exist 𝐴1 ⊆ 𝐵1 and 𝐴2 ⊆ 𝐵2 such that

⟨𝜇𝐴1
∘ 𝜇𝐴2

, 𝑓⟩‖1𝐴 ∘ 1𝐴‖𝑝
𝑝(𝜇) ≤ 2⟨(1𝐴 ∘ 1𝐴)𝑝, 𝑓⟩𝜇

and
min (|𝐴1|

|𝐵1| ,
|𝐴2|
|𝐵2|) ≥ 1

4 |𝐴|−2𝑝 ‖1𝐴 ∘ 1𝐴‖2𝑝
𝑝(𝜇).

Proof. First note that the statement is trivially true (with 𝐴1 = 𝐵1 and 𝐴2 = 𝐵2, say) if
‖1𝐴 ∘ 1𝐴‖𝑝

𝑝(𝜇) = 0. We can therefore assume this is ≠ 0.
For 𝑠 ∈ 𝐺𝑝 let 𝐴1(𝑠) = 𝐵1 ∩ (𝐴 + 𝑠1) ∩ ⋯ ∩ (𝐴 + 𝑠𝑝), and similarly for 𝐴2(𝑠). Note that

⟨(1𝐴 ∘ 1𝐴)𝑝, 𝑓⟩𝜇 = ∑
𝑥

𝜇𝐵1
∘ 𝜇𝐵2

(𝑥)(1𝐴 ∘ 1𝐴(𝑥))𝑝𝑓(𝑥)

= ∑
𝑏1,𝑏2

𝜇𝐵1
(𝑏1)𝜇𝐵2

(𝑏2)1𝐴 ∘ 1𝐴(𝑏1 − 𝑏2)𝑝𝑓(𝑏1 − 𝑏2)

= ∑
𝑏1,𝑏2

𝜇𝐵1
(𝑏1)𝜇𝐵2

(𝑏2) (∑
𝑡∈𝐺

1𝐴+𝑡(𝑏1)1𝐴+𝑡(𝑏2))
𝑝

𝑓(𝑏1 − 𝑏2)

= ∑
𝑏1,𝑏2

𝜇𝐵1
(𝑏1)𝜇𝐵2

(𝑏2) ∑
𝑠∈𝐺𝑝

1𝐴1(𝑠)(𝑏1)1𝐴2(𝑠)(𝑏2)𝑓(𝑏1 − 𝑏2)

= |𝐵1|−1 |𝐵2|−1 ∑
𝑠∈𝐺𝑝

⟨1𝐴1(𝑠) ∘ 1𝐴2(𝑠), 𝑓⟩.

In particular, applying this with 𝑓 ≡ 1 we see that

‖1𝐴 ∘ 1𝐴‖𝑝
𝑝(𝜇) = |𝐵1|−1 |𝐵2|−1 ∑

𝑠
|𝐴1(𝑠)| |𝐴2(𝑠)|

and
⟨(1𝐴 ∘ 1𝐴)𝑝, 𝑓⟩𝜇

‖1𝐴 ∘ 1𝐴‖𝑝
𝑝(𝜇)

=
∑𝑠⟨1𝐴1(𝑠) ∘ 1𝐴2(𝑠), 𝑓⟩

∑𝑠 |𝐴1(𝑠)| |𝐴2(𝑠)| = 𝜂,

say. Let 𝑀 > 0 be some parameter, and let

𝑔(𝑠) = {1 if 0 < |𝐴1(𝑠)| |𝐴2(𝑠)| < 𝑀2 and
0 otherwise.
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Then we have
∑

𝑠
𝑔(𝑠) |𝐴1(𝑠)| |𝐴2(𝑠)| < ∑

𝑠
𝑀 |𝐴1(𝑠)|1/2 |𝐴2(𝑠)|1/2 .

To see why, note first that each summand on the left-hand side is ≤ the corresponding
summand on the right-hand side, arguing by cases on whether 𝑔(𝑠) = 1 or not. It therefore
suffices to show that there exists some 𝑠 such that the summand on the left-hand side is <
the corresponding summand on the right-hand side.

If 𝑔(𝑠) = 0 for all 𝑠 then choose some 𝑠 such that |𝐴1(𝑠)| |𝐴2(𝑠)| ≥ 𝑀2 (this must exist
or else |𝐴1(𝑠)| |𝐴2(𝑠)| = 0 for all 𝑠, but then ‖1𝐴 ∘ 1𝐴‖𝑝

𝑝(𝜇) = 0 by the above calculation).
Otherwise, choose some 𝑠 such that 𝑔(𝑠) = 1, and note that for this 𝑠 we have, by definition
of 𝑠,

|𝐴1(𝑠)| |𝐴2(𝑠)| < 𝑀 |𝐴1(𝑠)|1/2 |𝐴2(𝑠)|1/2 .
We now choose

𝑀 = 1
2 |𝐴|−𝑝 (|𝐵1| |𝐵2|)1/2‖1𝐴 ∘ 1𝐴‖𝑝

𝑝(𝜇),
so that, by the Cauchy-Schwarz inequality,

∑
𝑠

𝑔(𝑠) |𝐴1(𝑠)| |𝐴2(𝑠)| < 𝑀 ∑
𝑠

|𝐴1(𝑠)|1/2 |𝐴2(𝑠)|1/2

≤ 𝑀 (∑
𝑠

∑
𝑥∈𝐺

1𝐴1(𝑠)(𝑥))
1/2

(∑
𝑠

∑
𝑥∈𝐺

1𝐴2(𝑠)(𝑥))
1/2

= 𝑀 |𝐴|𝑝 (|𝐵1| |𝐵2|)1/2

= 1
2 ∑

𝑠
|𝐴1(𝑠)| |𝐴2(𝑠)|

and so
∑

𝑠
(1 − 𝑔(𝑠)) |𝐴1(𝑠)| |𝐴2(𝑠)| > 1

2 ∑
𝑠

|𝐴1(𝑠)| |𝐴2(𝑠)|

whence

∑
𝑠

⟨1𝐴1(𝑠) ∘ 1𝐴2(𝑠), 𝑓⟩ = 𝜂 ∑ |𝐴1(𝑠)| |𝐴2(𝑠)| < 2𝜂 ∑
𝑠

|𝐴1(𝑠)| |𝐴2(𝑠)| (1 − 𝑔(𝑠)).

In particular there must exist some 𝑠 such that

⟨1𝐴1(𝑠) ∘ 1𝐴2(𝑠), 𝑓⟩ < 2𝜂 |𝐴1(𝑠)| |𝐴2(𝑠)| (1 − 𝑔(𝑠)).

We claim this 𝑠 meets the requirements. The first is satisfied since the right-hand side is
≤ 2𝜂 |𝐴1(𝑠)| |𝐴2(𝑠)|. The second is satisfied since the left-hand side is trivially ≥ 0 and
hence such an 𝑠 must satisfy 𝑔(𝑠) = 0, whence either |𝐴1(𝑠)| |𝐴2(𝑠)| ≥ 𝑀2, that is,

|𝐴1(𝑠)| |𝐴2(𝑠)| ≥ 1
4 |𝐴|−2𝑝 |𝐵1| |𝐵2| ‖1𝐴 ∘ 1𝐴‖2𝑝

𝑝(𝜇),

or |𝐴1(𝑠)| |𝐴2(𝑠)| = 0, which can’t happen because then the right-hand side is = 0.
The final bound now follows since 𝑥𝑦 ≤ min(𝑥, 𝑦) when 𝑥, 𝑦 ≤ 1.
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Lemma 4.2. Let 𝜖, 𝛿 > 0 and 𝑝 ≥ max(2, 𝜖−1 log(2/𝛿)) be an even integer. Let 𝐵1, 𝐵2 ⊆ 𝐺,
and let 𝜇 = 𝜇𝐵1

∘ 𝜇𝐵2
. For any finite set 𝐴 ⊆ 𝐺, if

𝑆 = {𝑥 ∈ 𝐺 ∶ 1𝐴 ∘ 1𝐴(𝑥) > (1 − 𝜖)‖1𝐴 ∘ 1𝐴‖𝑝(𝜇)},

then there are 𝐴1 ⊆ 𝐵1 and 𝐴2 ⊆ 𝐵2 such that

⟨𝜇𝐴1
∘ 𝜇𝐴2

, 1𝑆⟩ ≥ 1 − 𝛿

and
min (|𝐴1|

|𝐵1| ,
|𝐴2|
|𝐵2|) ≥ 1

4 |𝐴|−2𝑝 ‖1𝐴 ∘ 1𝐴‖2𝑝
𝑝(𝜇).

Proof. Apply Lemma 4.1 with 𝑓 = 1𝐺\𝑆. This produces some 𝐴1 ⊆ 𝐵1 and 𝐴2 ⊆ 𝐵2 such
that

⟨𝜇𝐴1
∘ 𝜇𝐴2

, 1𝐺\𝑆⟩ ≤ 2
⟨(1𝐴 ∘ 1𝐴)𝑝, 1𝐺\𝑆⟩𝜇

‖1𝐴 ∘ 1𝐴‖𝑝
𝑝(𝜇)

and
min (|𝐴1|

|𝐵1| ,
|𝐴2|
|𝐵2|) ≥ 1

4 |𝐴|−2𝑝 ‖1𝐴 ∘ 1𝐴‖2𝑝
𝑝(𝜇).

It then suffices to note that

⟨𝜇𝐴1
∘ 𝜇𝐴2

, 1𝑆⟩ = 1 − ⟨𝜇𝐴1
∘ 𝜇𝐴2

, 1𝐺\𝑆⟩

and by definition of 𝑆 we have

⟨(1𝐴 ∘ 1𝐴)𝑝, 1𝐺\𝑆⟩𝜇 ≤ (1 − 𝜖)𝑝‖1𝐴 ∘ 1𝐴‖𝑝
𝑝(𝜇) ∑

𝑥
𝜇(𝑥) = (1 − 𝜖)𝑝‖1𝐴 ∘ 1𝐴‖𝑝

𝑝(𝜇).

Now use the fact that 𝑝 ≥ 𝜖−1 log(2/𝛿) together with the inequality 1 − 𝑥 ≤ 𝑒−𝑥 to deduce
that the right-hand side is ≤ 𝛿

2 ‖1𝐴 ∘ 1𝐴‖𝑝
𝑝(𝜇).

Corollary 4.3. Let 𝜖, 𝛿 > 0 and 𝑝 ≥ max(2, 𝜖−1 log(2/𝛿)) be an even integer and 𝜇 ≡ 1/𝑁 .
If 𝐴 ⊆ 𝐺 has density 𝛼 and

𝑆 = {𝑥 ∶ 𝜇𝐴 ∘ 𝜇𝐴(𝑥) ≥ (1 − 𝜖)‖𝜇𝐴 ∘ 𝜇𝐴‖𝑝(𝜇)}

then there are 𝐴1, 𝐴2 ⊆ 𝐺 such that

⟨𝜇𝐴1
∘ 𝜇𝐴2

, 1𝑆⟩ ≥ 1 − 𝛿

and both 𝐴1 and 𝐴2 have density
≥ 1

4𝛼2𝑝.

Proof. We apply Lemma 4.2 with 𝐵1 = 𝐵2 = 𝐺. It remains to note that

‖1𝐴 ∘ 1𝐴‖𝑝(𝜇) ≥ ‖1𝐴 ∘ 1𝐴‖1(𝜇) = |𝐴|2/𝑁.
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Chapter 5

Finite field model

Theorem 5.1. If 𝐴1, 𝐴2, 𝑆 ⊆ 𝔽𝑛
𝑞 are such that 𝐴1 and 𝐴2 both have density at least 𝛼 then

there is a subspace 𝑉 of codimension

codim(𝑉 ) ≤ 227ℒ(𝛼)2ℒ(𝜖𝛼)2𝜖−2

such that
∣⟨𝜇𝑉 ∗ 𝜇𝐴1

∗ 𝜇𝐴2
, 1𝑆⟩ − ⟨𝜇𝐴1

∗ 𝜇𝐴2
, 1𝑆⟩∣ ≤ 𝜖.

Proof. (In this proof we write 𝐺 = 𝔽𝑛
𝑞 .) Let 𝑘 = ⌈ℒ(𝜖𝛼/4)⌉. Note that |𝐴1 + 𝐺| = |𝐺| ≤

𝛼−1|𝐴|. Furthermore, |𝐴2|/|𝑆| ≥ 𝛼. Therefore by Theorem 1.8 there exists some 𝑇 ⊆ 𝐺
with

|𝑇 | ≥ exp(−216ℒ(𝛼)2𝑘2𝜖−2)|𝑆|
such that

‖𝜇(𝑘)
𝑇 ∗ 𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆 − 𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆‖∞ ≤ 𝜖/4.

Let Δ = Δ1/2(𝜇𝑇 ) and

𝑉 = {𝑥 ∈ 𝐺 ∶ 𝛾(𝑥) = 1 for all 𝛾 ∈ Δ}.

Note that

⟨𝜇𝑉 ∗ 𝜇𝐴1
∗ 𝜇𝐴2

, 1𝑆⟩ = ⟨𝜇𝑉 , 𝜇𝐴1
∗ 𝜇𝐴2

∘ 1𝑆⟩ = 1
|𝑉 | ∑

𝑣∈𝑉
𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆(𝑣)

and
⟨𝜇𝐴1

∗ 𝜇𝐴2
, 1𝑆⟩ = 𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆(0).

Therefore

∣⟨𝜇𝑉 ∗ 𝜇𝐴1
∗ 𝜇𝐴2

, 1𝑆⟩ − ⟨𝜇𝐴1
∗ 𝜇𝐴2

, 1𝑆⟩∣ ≤ 1
|𝑉 | ∑

𝑣∈𝑉
∣𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆(𝑣) − 𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆(0)∣ .

In particular it suffices to show that, for any 𝑣 ∈ 𝑉 ,

∣𝜇𝐴1
∗ 𝜇𝐴2

∘ 1𝑆(𝑣) − 𝜇𝐴1
∗ 𝜇𝐴2

∘ 1𝑆(0)∣ ≤ 𝜖.

By the triangle inequality and construction of 𝑇 , it suffices to show that
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∣𝜇(𝑘)
𝑇 ∗ 𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆(𝑣) − 𝜇(𝑘)

𝑇 ∗ 𝜇𝐴1
∗ 𝜇𝐴2

∘ 1𝑆(0)∣ ≤ 𝜖/2.
By the Fourier transform we have, for any 𝑥 ∈ 𝐺,

𝜇(𝑘)
𝑇 ∗ 𝜇𝐴1

∗ 𝜇𝐴2
∘ 1𝑆(𝑥) = 1

𝑁 ∑
𝛾∈𝐺

𝜇𝑇 (𝛾)𝑘𝜇𝐴1
(𝛾)𝜇𝐴2

(𝛾)1̂−𝑆(𝛾)𝛾(𝑥).

Therefore the left-hand side of the desired inequality is, by the triangle inequality, at most

1
𝑁 ∑

𝛾∈𝐺
|𝜇𝑇 (𝛾)|𝑘 ∣𝜇𝐴1

(𝛾)𝜇𝐴2
(𝛾)1̂−𝑆(𝛾)∣ |𝛾(𝑣) − 1| .

By choice of 𝑣 ∈ 𝑉 the summand vanishes when 𝛾 ∈ Δ. When 𝛾 ∉ Δ the summand is
bounded above by

21−𝑘 ∣𝜇𝐴1
(𝛾)𝜇𝐴2

(𝛾)1̂−𝑆(𝛾)∣ .
Therefore the left-hand side of the desired inequality is at most

21−𝑘 1
𝑁 ∑

𝛾
∣𝜇𝐴1

(𝛾)𝜇𝐴2
(𝛾)1̂−𝑆(𝛾)∣ ≤ 21−𝑘 |𝑆| 1

𝑁 ∑
𝛾

∣𝜇𝐴1
(𝛾)𝜇𝐴2

(𝛾)∣

using the trivial bound |1̂𝑆| ≤ |𝑆|. By the Cauchy-Schwarz inequality the sum on the right
is at most

(∑
𝛾

∣𝜇𝐴1
∣2)

1/2

(∑
𝛾

∣𝜇𝐴2
∣2)

1/2

.

By Parseval’s identity this is at most 𝛼−1. Therefore the desired inequality follows from

21−𝑘 |𝑆| 1
𝑁 𝛼−1 ≤ 21−𝑘𝛼−1 ≤ 𝜖/2.

It remains to check the codimension of 𝑉 . For this, let Δ′ ⊆ Δ be as provided by Chang’s
lemma, Lemma 2.12, so that

Δ ⊆ { ∑
𝛾∈Δ′

𝑐𝛾𝛾 ∶ 𝑐𝛾 ∈ {−1, 0, 1}} .

Let

𝑊 = {𝑥 ∈ 𝐺 ∶ 𝛾(𝑥) = 1 for all 𝛾 ∈ Δ′}.
It follows that 𝑊 ≤ 𝑉 , so it suffices to bound the codimension of 𝑊 . This we can bound
trivially using the bound from Chang’s lemma and the fact that ℒ(𝛿) = log(𝑒2/𝛿) ≤ 2 +
log(1/𝛿) ≤ 4 log(1/𝛿), provided log(1/𝛿) ≥ 1, so

|Δ′| ≤ ⌈4𝑒ℒ(𝛿)⌉ ≤ 27 log(1/𝛿),
where

𝛿 = |𝑇 | /𝑁 ≥ exp(−216ℒ(𝛼)2𝑘2𝜖−2),
so

codim(𝑉 ) ≤ |Δ′| ≤ 223ℒ(𝛼)2𝑘2𝜖−2 ≤ 225ℒ(𝛼)2ℒ(𝜖𝛼/4)2𝜖−2,
and now use ℒ(𝜖𝛼/4) ≤ 2ℒ(𝜖𝛼), say.
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Lemma 5.2. For any function 𝑓 ∶ 𝐺 → ℂ and integer 𝑘 ≥ 1

‖𝑓 ∗ 𝑓‖2𝑘 ≤ ‖𝑓 ∘ 𝑓‖2𝑘.

Proof. To finish, similar trick to unbalancing.

Lemma 5.3. For any function 𝑓 with ∑ 𝑓(𝑥) = 1

𝑓 ∗ 𝑓 − 1/𝑁 = (𝑓 − 1/𝑁) ∗ (𝑓 − 1/𝑁).

Proof. Expand everything out.

Lemma 5.4. For any function 𝑓 with ∑ 𝑓(𝑥) = 1

𝑓 ∘ 𝑓 − 1/𝑁 = (𝑓 − 1/𝑁) ∘ (𝑓 − 1/𝑁).

Proof. Expand everything out.

Lemma 5.5. Let 𝜖 > 0 and 𝜇 ≡ 1/𝑁 . If 𝐴, 𝐶 ⊆ 𝐺, where 𝐶 has density at least 𝛾, and

|𝑁⟨𝜇𝐴 ∗ 𝜇𝐴, 𝜇𝐶⟩ − 1| > 𝜖

then, if 𝑓 = (𝜇𝐴 − 1/𝑁), ‖𝑓 ∘ 𝑓‖𝑝(𝜇) ≥ 𝜖/2𝑁 for 𝑝 = 2⌈ℒ(𝛾)⌉.

Proof. By Hölder’s inequality, for any 𝑝 ≥ 1

𝜖 < |𝑁⟨𝜇𝐴 ∗ 𝜇𝐴 − 1/𝑁, 𝜇𝐶⟩| ≤ ‖𝜇𝐴 ∗ 𝜇𝐴 − 1/𝑁‖𝑝𝛾−1/𝑝𝑁1−1/𝑝.

In particular if we choose 𝑝 = 2⌈ℒ(𝛾)⌉ then 𝛾−1/𝑝 ≤ 𝑒1/2 ≤ 2 and so we deduce that, by
Lemma 5.3,

‖𝑓 ∗ 𝑓‖𝑝 ≥ 1
2 𝜖𝑁1/𝑝−1.

It remains to use Lemmas 5.3 and 5.4 and apply Lemma 5.2, and note that we can pass
from the 𝐿𝑝 norm to the 𝐿𝑝(𝜇) norm losing a factor of 𝑁1/𝑝.

Proposition 5.6. Let 𝜖 ∈ (0, 1). If 𝐴, 𝐶 ⊆ 𝔽𝑛
𝑞 , where 𝐶 has density at least 𝛾, and

|𝑁⟨𝜇𝐴 ∗ 𝜇𝐴, 𝜇𝐶⟩ − 1| > 𝜖

then there is a subspace 𝑉 of codimension

≤ 2171𝜖−24ℒ(𝛼)4ℒ(𝛾)4.

such that ‖1𝐴 ∗ 𝜇𝑉 ‖∞ ≥ (1 + 𝜖/32)𝛼.

Proof. By Lemma 5.5, if 𝑓 = 𝜇𝐴 − 1/𝑁 ,

‖𝑓 ∘ 𝑓‖𝑝(𝜇) ≥ 𝜖/2𝑁,

where 𝑝 = 2⌈ℒ(𝛾)⌉ ≤ 4ℒ(𝛾). By Lemma 3.2 there exists some 𝑝′ such that

𝑝′ ≤ 128𝜖−1 log(96/𝜖)ℒ(𝛾)

such that
‖𝑓 ∘ 𝑓 + 1/𝑁‖𝑝′(𝜇) ≥ (1 + 𝜖/4)/𝑁.
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By Lemma 5.4 𝑓 ∘ 𝑓 + 1/𝑁 = 𝜇𝐴 ∘ 𝜇𝐴.
Let 𝑞 = 2⌈𝑝′ +28𝜖−2 log(64/𝜖)⌉. By Corollary 4.3, there are 𝐴1, 𝐴2, both of density ≥ 𝛼2𝑞

such that
⟨𝜇𝐴1

∘ 𝜇𝐴2
, 1𝑆⟩ ≥ 1 − 𝜖/32

where
𝑆 = {𝑥 ∶ 𝜇𝐴 ∘ 𝜇𝐴(𝑥) ≥ (1 − 𝜖/16)‖𝜇𝐴 ∘ 𝜇𝐴‖𝑞(𝜇)}.

Since
‖𝜇𝐴 ∘ 𝜇𝐴‖𝑞(𝜇) ≥ ‖𝜇𝐴 ∘ 𝜇𝐴‖𝑝′(𝜇) ≥ (1 + 𝜖/4)/𝑁

we know
𝑆 ⊆ 𝑆′ = {𝑥 ∶ 𝜇𝐴 ∘ 𝜇𝐴(𝑥) ≥ (1 + 𝜖/8)/𝑁}.

By Theorem 5.1 (applied with 𝜖 replaced by 𝜖/32) there is a subspace 𝑉 of codimension

≤ 237ℒ(𝛼2𝑞)2ℒ(𝜖𝛼2𝑞/32)2𝜖−2

such that
⟨𝜇𝑉 ∗ 𝜇𝐴1

∘ 𝜇𝐴2
, 1𝑆′⟩ ≥ 1 − 1

16 𝜖.
Using ℒ(𝑥𝑦) ≤ 𝑥−1ℒ(𝑦) we have

ℒ(𝜖𝛼2𝑞/32) ≤ 32𝜖−1ℒ(𝛼2𝑞),

and we also use ℒ(𝑥𝑦) ≤ 𝑦ℒ(𝑥) to simplify the codimension bound to

≤ 251𝑞4ℒ(𝛼)4𝜖−4.

We further note that (using log 𝑥 ≤ 𝑥 say)

𝑞 ≤ 210𝑝′𝜖−2 log(64/𝜖) ≤ 230𝜖−5ℒ(𝛾).

Therefore the desired codimension bound follows. Finally, by definition of 𝑆′, it follows that

(1 + 𝜖/32)/𝑁 ≤ ((1 + 𝜖/8)/𝑁)(1 − 𝜖/16)
≤ ⟨𝜇𝑉 ∗ 𝜇𝐴1

∘ 𝜇𝐴2
, 𝜇𝐴 ∘ 𝜇𝐴⟩

≤ ‖𝜇𝑉 ∗ 𝜇𝐴‖∞‖𝜇𝐴 ∗ 𝜇𝐴2
∘ 𝜇𝐴1

‖1

= ‖𝜇𝑉 ∗ 1𝐴‖∞ |𝐴|−1 ,

and the proof is complete.

Lemma 5.7. If 𝐴 ⊆ 𝐺 has no non-trivial three-term arithmetic progressions and 𝐺 has odd
order then

⟨𝜇𝐴 ∗ 𝜇𝐴, 𝜇2⋅𝐴⟩ = 1/ |𝐴|2 .
Proof. Expand out using definitions.

Theorem 5.8. Let 𝑞 be an odd prime power. If 𝐴 ⊆ 𝔽𝑛
𝑞 with 𝛼 = |𝐴| /𝑞𝑛 has no non-trivial

three-term arithmetic progressions then

𝑛 ≪ ℒ(𝛼)9.

Proof. Let 𝑡 ≥ 0 be maximal such that there is a sequence of subspaces 𝔽𝑛
𝑞 = 𝑉0 ≥ ⋯ ≥ 𝑉𝑡

and associated 𝐴𝑖 ⊆ 𝑉𝑖 with 𝐴0 = 𝐴 such that
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1. for 0 ≤ 𝑖 ≤ 𝑡 there exists 𝑥𝑖 such that 𝐴𝑖 ⊆ 𝐴 − 𝑥𝑖,

2. with 𝛼𝑖 = |𝐴𝑖| / |𝑉𝑖| we have
𝛼𝑖+1 ≥ 65

64𝛼𝑖

for 0 ≤ 𝑖 < 𝑡, and

3.
codim(𝑉𝑖+1) ≤ codim(𝑉𝑖) + 𝑂(ℒ(𝛼)8)

for 0 ≤ 𝑖 < 𝑡. (here the second summand should be replaced with whatever explicit
codimension bound we get from the above).

Note this is well-defined since 𝑡 = 0 meets the requirements, and this process is finite
and 𝑡 ≪ ℒ(𝛼), since 𝛼𝑖 ≤ 1 for all 𝑖. Therefore

codim(𝑉𝑡) ≪ ℒ(𝛼)9.

Suppose first that
|𝑉𝑡|⟨𝜇𝐴𝑡

∗ 𝜇𝐴𝑡
, 𝜇2⋅𝐴𝑡

⟩ < 1/2.
In this case we now apply Proposition 5.6 to 𝐴𝑡 ⊆ 𝑉𝑡 with 𝜖 = 1/2 (note that 𝑁 = |𝑉𝑡|
and all inner product, 𝜇 etc, are relative to the ambient group 𝑉𝑡 now). Therefore there is
a subspace 𝑉 ≤ 𝑉𝑡 of codimension (relative to 𝑉𝑡) of ≪ ℒ(𝛼)8 such that there exists some
𝑥 ∈ 𝑉𝑡 with

|(𝐴𝑡 − 𝑥) ∩ 𝑉 |
|𝑉 | = 1𝐴𝑡

∗ 𝜇𝑉 (𝑥) = ‖1𝐴𝑡
∗ 𝜇𝑉 ‖∞ ≥ (1 + 1/64)𝛼𝑡,

which contradicts the maximality of 𝑡, letting 𝑉𝑡+1 = 𝑉 and 𝐴𝑡+1 = (𝐴𝑡 − 𝑥) ∩ 𝑉𝑡.
Therefore

|𝑉𝑡|⟨𝜇𝐴𝑡
∗ 𝜇𝐴𝑡

, 𝜇2⋅𝐴𝑡
⟩ ≥ 1/2.

By Lemma 5.7 the left-hand side is equal to |𝑉𝑡|/|𝐴𝑡|2, and therefore

𝛼2 ≤ 𝛼2
𝑡 ≤ 2/|𝑉𝑡|.

By the codimension bound the right-hand side is at most

2𝑞𝑂(ℒ(𝛼)9)−𝑛.

If 𝛼2 ≤ 2𝑞−𝑛/2 we are done, otherwise we deduce that ℒ(𝛼)9 ≫ 𝑛 as required.
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Chapter 6

Bohr sets

Definition 6.1 (Bohr sets). Let 𝜈 ∶ 𝐺 → ℝ. The corresponding Bohr set is defined to be

Bohr(𝜈) = {𝑥 ∈ 𝐺 ∶ |1 − 𝛾(𝑥)| ≤ 𝜈(𝛾) for all 𝛾 ∈ Γ} .

The rank of 𝜈, denoted by rk(𝜈), is defined to be the size of the set of those 𝛾 ∈ 𝐺 such that
𝜈(𝛾) < 2.

(Basic API facts: Bohr sets are symmetric and contain 0. Also that, without loss of
generality, we can assume 𝜈 takes only values in ℝ≥0 - I think it might be easier to have the
definition allow arbitrary real values, and then switch to non-negative only in proofs where
convenient. Or could have the definition only allow non-negative valued functions in the
first place.)

Lemma 6.2. If 𝜌 ∈ (0, 1) and 𝜈 ∶ 𝐺 → ℝ then

|Bohr(𝜌 ⋅ 𝜈)| ≥ (𝜌/4)rk(𝜈) |Bohr(𝜈)| .

Proof. There are at most ⌈4/𝜌⌉ many 𝑧𝑖 such that if |1 − 𝑤| ≤ 𝜈(𝛾) then |𝑧𝑖 − 𝑤| ≤ 𝜌𝜈(𝛾)/2
for some 𝑖. Let Γ = {𝛾 ∶ 𝜈(𝛾) < 2} and define a function 𝑓 ∶ Bohr(𝜈) → ⌈2/𝜌⌉rk(𝜈) where for
𝛾 ∈ Γ we assign the 𝛾-coordinate of 𝑓(𝑥) as whichever 𝑗 has |𝑧𝑗 − 𝛾(𝑥)| ≤ 𝜌𝜈(𝛾)/2.

By the pigeonhole principle there must exist some (𝑗1, … , 𝑗𝑑) such that 𝑓−1(𝑗1, … , 𝑗𝑑)
has size at least (⌈2/𝜌⌉)−rk(𝜈) |Bohr(𝜈)|. Call this set 𝐵′. It must be non-empty, so fix some
𝑥 ∈ 𝐵′. We claim that 𝐵′ − 𝑥 ⊆ |Bohr(𝜌 ⋅ 𝜈)|, which completes the proof.

Suppose that 𝑧 = 𝑥 + 𝑦 with 𝑥, 𝑦 ∈ 𝐵′, and fix some 𝛾 ∈ Γ. By assumption there is some
𝑧𝑗 ∈ ℂ such that |𝑧𝑗 − 𝛾(𝑥)| ≤ 𝜌𝜈(𝛾)/2 and |𝑧𝑗 − 𝛾(𝑦)| ≤ 𝜌𝜈(𝛾)/2. Then by the triangle
inequality,

|1 − 𝛾(𝑦 − 𝑥)| = |𝛾(𝑥) − 𝛾(𝑦)| ≤ 𝜌𝜈(𝛾)
and so 𝑧 = 𝑦 − 𝑥 ∈ Bohr(𝜌 ⋅ 𝜈).

Definition 6.3 (Regularity). We say 𝜈 ∶ 𝐺 → ℝ is regular if, with 𝑑 = rk(𝜈), for all 𝜅 ∈ ℝ
with |𝜅| ≤ 1/100𝑑 we have

(1 − 100𝑑 |𝜅|) ≤ |Bohr((1 + 𝜅)𝜈)|
|Bohr(𝜈)| ≤ (1 + 100𝑑 |𝜅|)

Lemma 6.4. For any 𝜈 ∶ 𝐺 → ℝ there exists 𝜌 ∈ [ 1
2 , 1] such that 𝜌 ⋅ 𝜈 is regular.
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Proof. To do.

Lemma 6.5. If 𝐵 is a regular Bohr set of rank 𝑑 and 𝜇 ∶ 𝐺 → ℝ≥0 is supported on 𝐵𝜌,
with 𝜌 ∈ (0, 1), then

‖𝜇𝐵 ∗ 𝜇 − 𝜇𝐵‖1 ≪ 𝜌𝑑‖𝜇‖1.
Proof. To do.

Lemma 6.6. There is a constant 𝑐 > 0 such that the following holds. Let 𝐵 be a regular
Bohr set of rank 𝑑 and 𝐿 ≥ 1 be any integer. If 𝜈 ∶ 𝐺 → ℝ≥0 is supported on 𝐿𝐵𝜌, where
𝜌 ≤ 𝑐/𝐿𝑑, and ‖𝜈‖1 = 1, then

𝜇𝐵 ≤ 2𝜇𝐵1+𝐿𝜌
∗ 𝜈.

Proof. To do.

Lemma 6.7. There is a constant 𝑐 > 0 such that the following holds. Let 𝐵 be a regular
Bohr set of rank 𝑑, suppose 𝐴 ⊆ 𝐵 has density 𝛼, let 𝜖 > 0, and suppose 𝐵′, 𝐵″ ⊆ 𝐵𝜌 where
𝜌 ≤ 𝑐𝛼𝜖/𝑑. Then either

1. there is some translate 𝐴′ of 𝐴 such that |𝐴′ ∩ 𝐵′| ≥ (1 − 𝜖)𝛼 |𝐵′| and |𝐴′ ∩ 𝐵″| ≥
(1 − 𝜖)𝛼 |𝐵″|, or

2. ‖1𝐴 ∗ 𝜇𝐵′‖∞ ≥ (1 + 𝜖/2)𝛼, or

3. ‖1𝐴 ∗ 𝜇𝐵″‖∞ ≥ (1 + 𝜖/2)𝛼.

Proof. To do.
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Chapter 7

The integer case

Theorem 7.1. There is a constant 𝑐 > 0 such that the following holds. Let 𝜖 > 0 and
𝐵, 𝐵′ ⊆ 𝐺 be regular Bohr sets of rank 𝑑. Suppose that 𝐴1 ⊆ 𝐵 with density 𝛼1 and 𝐴2 is
such that there exists 𝑥 with 𝐴2 ⊆ 𝐵′ − 𝑥 with density 𝛼2. Let 𝑆 be any set with |𝑆| ≤ 2 |𝐵|.
There is a regular Bohr set 𝐵″ ⊆ 𝐵′ of rank at most

𝑑 + 𝑂𝜖(ℒ𝛼1
3ℒ𝛼2)

and size
|𝐵″| ≥ exp(−𝑂𝜖(𝑑ℒ𝛼1𝛼2/𝑑 + ℒ𝛼1

3ℒ𝛼2ℒ𝛼1𝛼2/𝑑)) |𝐵′|
such that

∣⟨𝜇𝐵′ ∗ 𝜇𝐴1
∘ 𝜇𝐴2

, 1𝑆⟩ − ⟨𝜇𝐴1
∘ 𝜇𝐴2

, 1𝑆⟩∣ ≤ 𝜖.
Proof. To do.

Proposition 7.2. There is a constant 𝑐 > 0 such that the following holds. Let 𝜖 > 0 and
𝑝 ≥ 2 be an integer. Let 𝐵 ⊆ 𝐺 be a regular Bohr set and 𝐴 ⊆ 𝐵 with relative density 𝛼. Let
𝜈 ∶ 𝐺 → ℝ≥0 be supported on 𝐵𝜌, where 𝜌 ≤ 𝑐𝜖𝛼/ rank(𝐵), such that ‖𝜈‖1 = 1 and ̂𝜈 ≥ 0. If

‖(𝜇𝐴 − 𝜇𝐵) ∘ (𝜇𝐴 − 𝜇𝐵)‖𝑝(𝜈) ≥ 𝜖 𝜇(𝐵)−1,

then there exists 𝑝′ ≪𝜖 𝑝 such that

‖𝜇𝐴 ∘ 𝜇𝐴‖𝑝′(𝜈) ≥ (1 + 1
4 𝜖) 𝜇(𝐵)−1.

Proof. To do.

Proposition 7.3. There is a constant 𝑐 > 0 such that the following holds. Let 𝑝 ≥ 2 be an
even integer. Let 𝑓 ∶ 𝐺 → ℝ, let 𝐵 ⊆ 𝐺 and 𝐵′, 𝐵″ ⊆ 𝐵𝑐/ rank(𝐵) all be regular Bohr sets.
Then

‖𝑓 ∘ 𝑓‖𝑝(𝜇𝐵′ ∘𝜇𝐵′ ∗𝜇𝐵″ ∘𝜇𝐵″ ) ≥ 1
2 ‖𝑓 ∗ 𝑓‖𝑝(𝜇𝐵).

Proof. To do,

Proposition 7.4. There is a constant 𝑐 > 0 such that the following holds. Let 𝜖 > 0. Let
𝐵 ⊆ 𝐺 be a regular Bohr set and 𝐴 ⊆ 𝐵 with relative density 𝛼, and let 𝐵′ ⊆ 𝐵𝑐𝜖𝛼/ rank(𝐵)
be a regular Bohr set and 𝐶 ⊆ 𝐵′ with relative density 𝛾. Either
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1. ∣⟨𝜇𝐴 ∗ 𝜇𝐴, 𝜇𝐶⟩ − 𝜇(𝐵)−1∣ ≤ 𝜖𝜇(𝐵)−1 or

2. there is some 𝑝 ≪ ℒ𝛾 such that ‖(𝜇𝐴 − 𝜇𝐵) ∗ (𝜇𝐴 − 𝜇𝐵)‖𝑝(𝜇𝐵′ ) ≥ 1
2 𝜖𝜇(𝐵)−1.

Proof. To do.

Proposition 7.5. There is a constant 𝑐 > 0 such that the following holds. Let 𝜖 > 0 and
𝑝, 𝑘 ≥ 1 be integers such that (𝑘, |𝐺|) = 1. Let 𝐵, 𝐵′, 𝐵″ ⊆ 𝐺 be regular Bohr sets of rank 𝑑
such that 𝐵″ ⊆ 𝐵′

𝑐/𝑑 and 𝐴 ⊆ 𝐵 with relative density 𝛼. If

‖𝜇𝐴 ∘ 𝜇𝐴‖𝑝(𝜇𝑘⋅𝐵′ ∘𝜇𝑘⋅𝐵′ ∗𝜇𝑘⋅𝐵″ ∘𝜇𝑘⋅𝐵″ ) ≥ (1 + 𝜖) 𝜇(𝐵)−1,

then there is a regular Bohr set 𝐵‴ ⊆ 𝐵″ of rank at most

rank(𝐵‴) ≤ 𝑑 + 𝑂𝜖(ℒ𝛼4𝑝4)

and size
|𝐵‴| ≥ exp(−𝑂𝜖(𝑑𝑝ℒ𝛼/𝑑 + ℒ𝛼5𝑝5)) |𝐵″|

such that
‖𝜇𝐵‴ ∗ 𝜇𝐴‖∞ ≥ (1 + 𝑐𝜖)𝜇(𝐵)−1.

Proof. To do.

Theorem 7.6. There is a constant 𝑐 > 0 such that the following holds. Let 𝜖, 𝛿 ∈ (0, 1) and
𝑝, 𝑘 ≥ 1 be integers such that (𝑘, |𝐺|) = 1. For any 𝐴 ⊆ 𝐺 with density 𝛼 there is a regular
Bohr set 𝐵 with

𝑑 = rank(𝐵) = 𝑂𝜖 (ℒ𝛼5𝑝4) and |𝐵| ≥ exp (−𝑂𝜖,𝛿(ℒ𝛼6𝑝5ℒ𝛼/𝑝)) |𝐺|

and some 𝐴′ ⊆ (𝐴 − 𝑥) ∩ 𝐵 for some 𝑥 ∈ 𝐺 such that

1. |𝐴′| ≥ (1 − 𝜖)𝛼 |𝐵|,
2. |𝐴′ ∩ 𝐵′| ≥ (1 − 𝜖)𝛼 |𝐵′|, where 𝐵′ = 𝐵𝜌 is a regular Bohr set with 𝜌 ∈ ( 1

2 , 1) ⋅ 𝑐𝛿𝛼/𝑑,
and

3.
‖𝜇𝐴′ ∘ 𝜇𝐴′‖𝑝(𝜇𝑘⋅𝐵″ ∘𝜇𝑘⋅𝐵″ ∗𝜇𝑘⋅𝐵‴ ∘𝜇𝑘⋅𝐵‴ ) < (1 + 𝜖)𝜇(𝐵)−1,

for any regular Bohr sets 𝐵″ = 𝐵′
𝜌′ and 𝐵‴ = 𝐵″

𝜌″ satisfying 𝜌′, 𝜌″ ∈ ( 1
2 , 1) ⋅ 𝑐𝛿𝛼/𝑑.

Proof. To do.

Theorem 7.7. There is a constant 𝑐 > 0 such that the following holds. Let 𝛿, 𝜖 ∈ (0, 1),
let 𝑝 ≥ 1 and let 𝑘 be a positive integer such that (𝑘, |𝐺|) = 1. There is a constant
𝐶 = 𝐶(𝜖, 𝛿, 𝑘) > 0 such that the following holds.

For any finite abelian group 𝐺 and any subset 𝐴 ⊆ 𝐺 with |𝐴| = 𝛼 |𝐺| there exists a
regular Bohr set 𝐵 with

rank(𝐵) ≤ 𝐶𝑝4 log(2/𝛼)5

and
|𝐵| ≥ exp (−𝐶𝑝5 log(2𝑝/𝛼) log(2/𝛼)6) |𝐺|

and 𝐴′ ⊆ (𝐴 − 𝑥) ∩ 𝐵 for some 𝑥 ∈ 𝐺 such that
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1. |𝐴′| ≥ (1 − 𝜖)𝛼 |𝐵|,
2. |𝐴′ ∩ 𝐵′| ≥ (1 − 𝜖)𝛼 |𝐵′|, where 𝐵′ = 𝐵𝜌 is a regular Bohr set with 𝜌 ∈ ( 1

2 , 1) ⋅ 𝑐𝛿𝛼/𝑑𝑘,
and

3.
‖(𝜇𝐴′ − 𝜇𝐵) ∗ (𝜇𝐴′ − 𝜇𝐵)‖𝑝(𝜇𝑘⋅𝐵′ ) ≤ 𝜖|𝐺|

|𝐵| .

Proof. To do.

Theorem 7.8. If 𝐴 ⊆ {1, … , 𝑁} has size |𝐴| = 𝛼𝑁 , then 𝐴 contains at least

exp(−𝑂(ℒ𝛼12))𝑁2

many three-term arithmetic progressions.

Proof. To do.

Theorem 7.9. If 𝐴 ⊆ {1, … , 𝑁} contains no non-trivial three-term arithmetic progressions
then

|𝐴| ≤ 𝑁
exp(−𝑐(log 𝑁)1/12)

for some constant 𝑐 > 0.

Proof. To do.
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