LeanAPAP

Thomas Bloom, Yaël Dillies

May 2, 2024

Almost-Periodicity

Lemma 1.1 (Marcinkiewicz-Zygmund inequality). Let $m \ge 1$. If $f : G \to \mathbb{R}$ is such that $\mathbb{E}_x f(x) = 0$ and $|f(x)| \le 2$ for all x then

$$\mathbb{E}_{x_1,\dots,x_n} \left| \sum_{i=1}^n f(x_i) \right|^{2m} \le (4mn)^m.$$

Proof. Let S be the left-hand side. Since $0 = \mathbb{E}_y f(y)$ we have, by the triangle inequality, and Hölder's inequality,

$$S = \mathbb{E}_{x_1,\dots,x_n} \left| \sum_i f(x_i) - \mathbb{E}_{y_i} f(y_i) \right|^{2m} = \mathbb{E}_{x_1,\dots,x_n} \left| \mathbb{E}_{y_i} \left(\sum_i f(x_i) - f(y_i) \right) \right|^{2m} \le \mathbb{E}_{x_1,\dots,y_n} \left| \sum_i f(x_i) - f(y_i) \right|^{2m} \le \mathbb{E}_{x_1,\dots,x_n} \left| \sum_i f(y_i) - f(y_i) \right|^{2m} \le \mathbb{E}_{x_1,\dots,$$

Changing the role of x_i and y_i makes no difference here, but multiplies the *i* summand by $\{-1, +1\}$, and therefore for any $\epsilon_i \in \{-1, +1\}$,

$$S \leq \mathbb{E}_{x_1, \dots, y_n} \left| \sum_i \epsilon_i (f(x_i) - f(y_i)) \right|^{2m}.$$

In particular, if we sample $\epsilon_i \in \{-1, +1\}$ uniformly at random, then

$$S \leq \mathbb{E}_{\epsilon_i} \mathbb{E}_{x_1, \dots, y_n} \left| \sum_i \epsilon_i (f(x_i) - f(y_i)) \right|^{2m}.$$

We now change the order of expectation and consider the expectation over just ϵ_i , viewing the $f(x_i) - f(y_i) = z_i$, say, as fixed quantities. For any z_i we can expand $\mathbb{E}_{\epsilon_i} |\sum_i \epsilon_i z_i|^{2m}$ and then bound it from above, using the triangle inequality and $|z_i| \leq 4$, by

$$4^{2m}\sum_{k_1+\dots+k_n=2m}\binom{2m}{k_1,\dots,k_n}\left|\mathbb{E}\epsilon_1^{k_1}\cdots\epsilon_n^{k_n}\right|.$$

The inner expectation vanishes unless each k_i is even, when it is trivially one. Therefore the above quantity is exactly

$$\sum_{l_1+\dots+l_n=m}\binom{2m}{2l_1,\dots,2l_n}\leq m^mn^m,$$

since for any $l_1 + \dots + l_n = m$,

$$\binom{2m}{2l_1,\ldots,2l_n} \leq m^m \binom{m}{l_1,\ldots,l_n}$$

This can be seen, for example, by writing both sides out using factorials, yielding

$$\frac{(2m)!}{(2l_1)!\cdots(2l_n)!} \le \frac{(2m)!}{2^m m!} \frac{m!}{l_1!\cdots l_n!} \le m^m \frac{m!}{l_1!\cdots l_n!}.$$

Lemma 1.2 (Complex-valued Marcinkiewicz-Zygmund inequality). Let $m \ge 1$. If $f: G \to \mathbb{C}$ is such that $\mathbb{E}_x f(x) = 0$ and $|f(x)| \le 2$ for all x then

$$\mathbb{E}_{x_1,\dots,x_n} \left| \sum_{i=1}^n f(x_i) \right|^{2m} \leq (16mn)^m.$$

Proof. Test.

Lemma 1.3. Let $\epsilon > 0$ and $m \ge 1$. Let $A \subseteq G$ and $f: G \to \mathbb{C}$. If $k \ge 64m\epsilon^{-2}$ then the set

$$L = \{ \vec{a} \in A^k : \| \tfrac{1}{k} \sum_{i=1}^k f(x - a_i) - \mu_A * f \|_{2m} \le \epsilon \| f \|_{2m} \}$$

has size at least $|A|^k/2$.

Proof. Note that if $a \in A$ is chosen uniformly at random then, for any fixed $x \in G$,

$$\mathbb{E} f(x-a_i) = \frac{1}{|A|} \sum_{a \in A} f(x-a) = \frac{1}{|A|} \mathbf{1}_A * f(x) = \mu_A * f(x).$$

Therefore, if we choose $a_1, \ldots, a_k \in A$ independently uniformly at random, for any fixed $x \in G$ and $1 \leq i \leq k$, the random variable $f(x - a_i) - f * \mu_A(x)$ has mean zero. By the Marcinkiewicz-Zygmund inequality Lemma 1.1, therefore,

$$\mathbb{E} \left| \frac{1}{k} \sum_i f(x-a_i) - f * \mu_A(x) \right|^{2m} \leq (16m/k)^m k^{-1} \mathbb{E} \sum_i \left| f(x-a_i) - f * \mu_A(x) \right|^{2m}.$$

We now sum both sides over all $x \in G$. By the triangle inequality, for any fixed $1 \le i \le k$ and $a_i \in A$,

$$\begin{split} \sum_{x \in G} \left| f(x-a_i) - f * \mu_A(x) \right|^{2m} &\leq 2^{2m-1} \sum_{x \in G} \left| f(x-a_i) \right|^{2m} + \sum_{x \in G} \left| f * \mu_A(x) \right|^{2m} \\ &\leq 2^{2m-1} \left(\| f \|_{2m}^{2m} + \| f * \mu_A \|_{2m}^{2m} \right). \end{split}$$

We note that $\|\mu_A\|_1 = \frac{1}{|A|} \sum_{x \in A} 1_A(x) = |A| / |A| = 1$, and hence by Young's inequality, $\|f * \mu_A\|_{2m} \le \|f\|_{2m}$, and so

$$\sum_{x \in G} \left| f(x - a_i) - f * \mu_A(x) \right|^{2m} \le 2^{2m} \|f\|_{2m}^{2m}.$$

It follows that

$$\mathbb{E}_{a_1,\dots,a_k \in A} \| \frac{1}{k} \sum_i \tau_{a_i} f - f * \mu_A \|_{2m}^{2m} \le (64m/k)^m \| f \|_{2m}^{2m}.$$

In particular, if $k \ge 64\epsilon^{-2}m$ then the right-hand side is at most $(\frac{\epsilon}{2} \|f\|_{2m})^{2m}$ as required. **Lemma 1.4.** Let $A \subseteq G$ and $f: G \to \mathbb{C}$. Let $\epsilon > 0$ and $m \ge 1$ and $k \ge 1$. Let

$$L = \{ \vec{a} \in A^k : \| \frac{1}{k} \sum_{i=1}^k f(x - a_i) - \mu_A * f \|_{2m} \le \epsilon \| f \|_{2m} \}.$$

If $t \in G$ is such that $\vec{a} \in L$ and $\vec{a} + (t, \dots, t) \in L$ then

$$\|\tau_t(\mu_A*f)-\mu_A*f\|_{2m}\leq 2\epsilon\|f\|_{2m}.$$

Proof. Test.

Lemma 1.5. Let $A \subseteq G$ and $k \ge 1$ and $L \subseteq A^k$. Then there exists some $\vec{a} \in L$ such that

$$\#\{t \in G: \vec{a} + (t, \dots, t) \in L\} \ge \frac{|L|}{|A+S|^k} |S|.$$

Proof. Test.

Theorem 1.6 (L_p almost periodicity). Let $\epsilon \in (0, 1]$ and $m \ge 1$. Let $K \ge 2$ and $A, S \subseteq G$ with $|A + S| \le K|A|$. Let $f : G \to \mathbb{C}$. There exists $T \subseteq G$ such that

$$|T| \ge K^{-512m\epsilon^{-2}}|S|$$

such that for any $t \in T$ we have

$$\|\tau_t(\mu_A*f)-\mu_A*f\|_{2m}\leq \epsilon\|f\|_{2m}.$$

Proof. Test.

Theorem 1.7 (L_{∞} almost periodicity). Let $\epsilon \in (0,1]$. Let $K \geq 2$ and $A, S \subseteq G$ with $|A+S| \leq K|A|$. Let $B, C \subseteq G$. Let $\eta = \min(1, |C|/|B|)$. There exists $T \subseteq G$ such that

$$|T| \ge K^{-4096\lceil \mathcal{L}\eta\rceil\epsilon^{-2}}|S|$$

such that for any $t \in T$ we have

$$\|\tau_t(\mu_A*1_B*\mu_C)-\mu_A*1_B*\mu_C\|_\infty\leq\epsilon.$$

Proof. Let T be as given in 1.6 with $f = 1_B$ and $m = \lceil \mathcal{L}\eta \rceil$ and $\epsilon = \epsilon/e$. (The size bound on T follows since $e^2 \leq 8$.) Fix $t \in T$ and let $F = \tau_t(\mu_A * 1_B) - \mu_A * 1_B$. We have, for any $x \in G$,

$$(\tau_t(\mu_A*1_B*\mu_C)-\mu_A*1_B*\mu_C)(x)=F*\mu_C(x)=\sum_y F(y)\mu_C(x-y)=\sum_y F(y)\mu_{x-C}(y).$$

By Hölder's inequality, this is (in absolute value), for any $m \ge 1$,

$$\|F\|_{2m}\|\mu_{x-C}\|_{1+\frac{1}{2m-1}}.$$

By the construction of T the first factor is at most $\frac{\epsilon}{e} \|1_B\|_{2m} = \frac{\epsilon}{e} |B|^{1/2m}$. We have by calculation

$$\|\mu_{x-C}\|_{1+\frac{1}{2m-1}} = |x-C|^{-1/2m} = |C|^{-1/2m}.$$

Therefore we have shown that

$$\|\tau_t(\mu_A*1_B*\mu_C)-\mu_A*1_B*\mu_C\|_\infty \leq \frac{\epsilon}{e}(|C|/|B|)^{-1/2m}.$$

The claim now follows since, by choice of m,

$$(|C|/|B|)^{-1/2m} \le e$$

(dividing into cases as to whether $\eta = 1$ or not).

Theorem 1.8. Let $\epsilon \in (0,1]$ and $k \ge 1$. Let $K \ge 2$ and $A, S \subseteq G$ with $|A+S| \le K|A|$. Let $B, C \subseteq G$. Let $\eta = \min(1, |C|/|B|)$. There exists $T \subseteq G$ such that

$$|T| \ge K^{-4096\lceil \mathcal{L}\eta\rceil k^2\epsilon^{-2}} |S|$$

such that

$$\|\mu_T^{(k)}\ast\mu_A\ast 1_B\ast\mu_C-\mu_A\ast 1_B\ast\mu_C\|_\infty\leq\epsilon.$$

Proof. Let T be as in Theorem 1.7 with ϵ replaced by ϵ/k . Note that, for any $x \in G$,

$$\mu_T^{(k)} \ast \mu_A \ast 1_B \ast \mu_C(x) = \frac{1}{|T|^k} \sum_{t_1, \dots, t_k \in T} \tau_{t_1 + \dots + t_k} \mu_A \ast 1_B \ast \mu_C(x).$$

It therefore suffices (by the triangle inequality) to show, for any fixed $x \in G$ and $t_1, \ldots, t_k \in T$, that with $F = \mu_A * 1_B * \mu_C$, we have

$$|\tau_{t_1+\dots+t_k}F(x)-F(x)|\leq\epsilon.$$

This follows by the triangle inequality applied k times if we knew that, for $1 \le l \le k$,

$$|\tau_{t_1+\dots+t_l}F(x)-\tau_{t_1+\dots+t_{l-1}}F(x)|\leq \epsilon/k.$$

We can write the left-hand side as

$$|\tau_{t_1+\dots+t_l}F(x)-\tau_{t_1+\dots+t_{l-1}}F(x)| = |\tau_{t_l}F(x-t_1-\dots-t-l-1)-F(x-t_1-\dots-t-l-1)|.$$

The right-hand side is at most

$$\|\tau_{t_l}F-F\|_\infty$$

and we are done by choice of T.

Chang's lemma

Definition 2.1 (Dissociation). We say that $A \subseteq G$ is dissociated if, for any $m \ge 1$, and any $x \in G$, there is at most one $A' \subset A$ of size |A'| = m such that

$$\sum_{a \in A'} a = x$$

Lemma 2.2 (Rudin's exponential inequality). If the discrete Fourier transform of $f : G \longrightarrow \mathbb{C}$ has dissociated support, then

It follows that

$$\lim_{x} e^{|f(x)|} \le 2e^{\|f\|_{2}^{2}/2}.$$

Proof. Using the convexity of $t \mapsto e^{tx}$ (for all $x \ge 0$ and $t \in [-1, 1]$) we have

 $e^{tx} \le \cosh(x) + t\sinh(x).$

It follows (taking x = |z| and $t = \Re(z)/|z|$) that, for any $z \in \mathbb{C}$,

$$e^{\Re z} \le \cosh|z| + \Re(z/|z|) \sinh|z|$$

In particular, if $c_\gamma\in\mathbb{C}$ with $|c_\gamma|=1$ is such that $\hat{f}(\gamma)=c_\gamma|\hat{f}(\gamma)|,$ then

$$\begin{split} e^{\Re f(x)} &= \exp\left(\Re \sum_{\gamma \in \Gamma} \hat{f}(\gamma) \gamma(x)\right) \\ &= \prod_{\gamma \in \Gamma} \exp\left(\Re \hat{f}(\gamma) \gamma(x)\right) \\ &\leq \prod_{\gamma \in \Gamma} \left(\cosh |\hat{f}(\gamma)| + \Re c_{\gamma} \gamma(x) \sinh |\hat{f}(\gamma)|\right). \end{split}$$

Therefore

$$\lim_x e^{\Re f(x)} \leq \lim_x \prod_{\gamma \in \Gamma} \left(\cosh |\hat{f}(\gamma)| + \Re c_\gamma \gamma(x) \sinh |\hat{f}(\gamma)| \right).$$

Using $\Re z = (z + \overline{z})/2$ the product here can be expanded as the sum of

$$\prod_{\gamma \in \Gamma_2} \frac{c_{\gamma}}{2} \prod_{\gamma \in \Gamma_3} \frac{\overline{c_{\gamma}}}{2} \left(\prod_{\gamma \in \Gamma_1} \cosh|\hat{f}(\gamma)| \right) \left(\prod_{\gamma \in \Gamma_2 \cup \Gamma_3} \sinh|\hat{f}(\gamma)| \right) \left(\sum_{\gamma \in \Gamma_2} \gamma - \sum_{\lambda \in \Gamma_3} \lambda \right) (x)$$

as $\Gamma_1 \sqcup \Gamma_2 \sqcup \Gamma_3 = \Gamma$ ranges over all partitions of Γ into three disjoint parts. Using the definition of dissociativity we see that

$$\sum_{\gamma\in\Gamma_2}\gamma-\sum_{\lambda\in\Gamma_3}\lambda\neq 0$$

unless $\Gamma_2 = \Gamma_3 = \emptyset$. In particular summing this term over all $x \in G$ gives 0. Therefore the only term that survives averaging over x is when $\Gamma_1 = \Gamma$, and so

$$\prod_x e^{\Re f(x)} \leq \prod_{\gamma \in \Gamma} \cosh |\hat{f}(\gamma)|.$$

The conclusion now follows using $\cosh(x) \leq e^{x^2/2}$ and $\sum_{\gamma \in \Gamma} |\hat{f}(\gamma)|^2 = ||f||_2^2$. The second conclusion follows by applying it to f(x) and -f(x) and using

$$e^{|y|} \le e^y + e^{-y}.$$

Lemma 2.3 (Rudin's inequality). If the discrete Fourier transform of $f : G \to \mathbb{C}$ has dissociated support and $p \ge 2$ is an integer, then $||f||_p \le 4\sqrt{pe}||f||_2$.

Proof. It is enough to show that $\|\Re f\|_p \leq 2\sqrt{pe} \|f\|_2$ as then

$$\|f\|_p \leq \|\Re f\|_p + \|i\Im f\|_p = \|\Re f\|_p + \|\Re(-if)\|_p \leq 4\sqrt{pe}\|f\|_2$$

If f = 0, the result is obvious. So assume $f \neq 0$. $||f||_2 > 0$, so WLOG $||f||_2 = \sqrt{p}$. Rudin's exponential inequality for f becomes $\mathbb{E} \exp |\Re f| \le 2 \exp(\frac{p}{2}) = (2\sqrt{e})^p$. Using $\frac{x^p}{p!} \le e^x$ for positive x, we get

Rearranging, $\|\Re f\|_p \leq 2p\sqrt{e} = 2\sqrt{pe}\|f\|_2$.

Definition 2.4 (Large spectrum). Let G be a finite abelian group and $f : G \to \mathbb{C}$. Let $\eta \in \mathbb{R}$. The η -large spectrum is defined to be

$$\Delta_\eta(f) = \{\gamma \in \widehat{G} : |\widehat{f}(\gamma)| \ge \eta \|f\|_1\}.$$

Definition 2.5 (Weighted energy). Let $\Delta \subseteq \widehat{G}$ and $m \ge 1$. Let $\nu : G \to \mathbb{C}$. Then

$$E_{2m}(\Delta;\nu) = \sum_{\gamma_1,\dots,\gamma_{2m}\in\Delta} \left| \hat{\nu}(\gamma_1+\dots-\gamma_{2m}) \right|.$$

Definition 2.6 (Energy). Let G be a finite abelian group and $A \subseteq G$. Let $m \ge 1$. We define

$$E_{2m}(A) = \sum_{a_1, \dots, a_{2m} \in A} \mathbf{1}_{a_1 + \dots - a_{2m} = 0}$$

Lemma 2.7. Let G be a finite abelian group and $f: G \to \mathbb{C}$. Let $\nu: G \to \mathbb{R}_{\geq 0}$ be such that whenever $|f| \neq 0$ we have $\nu \geq 1$. Let $\Delta \subseteq \Delta_{\eta}(f)$. Then, for any $m \geq 1$.

$$\eta^{2m} \frac{\|f\|_1^2}{\|f\|_2^2} \left|\Delta\right|^{2m} \leq E_{2m}(\Delta;\nu)$$

Proof. By definition of $\Delta_{\eta}(f)$ we know that

$$\eta \|f\|_1 \, |\Delta| \le \sum_{\gamma \in \Delta} |\hat{f}(\gamma)|.$$

There exists some $c_{\gamma} \in \mathbb{C}$ with $|c_{\gamma}| = 1$ for all γ such that

$$|\widehat{f}(\gamma)| = c_{\gamma}\widehat{f}(\gamma) = c_{\gamma}\sum_{x\in G}f(x)\overline{\gamma(x)}.$$

Interchanging the sums, therefore,

$$\eta \|f\|_1 \, |\Delta| \leq \sum_{x \in G} f(x) \sum_{\gamma \in \Delta} c_\gamma \overline{\gamma(x)}.$$

By Hölder's inequality the right-hand side is at most

$$\left(\sum_{x} |f(x)|\right)^{1-1/m} \left(\sum_{x} |f(x)| \left|\sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}\right|^{m}\right)^{1/m}.$$

Taking mth powers, therefore, we have

$$\eta^m \left| \Delta \right|^m \|f\|_1 \le \sum_x |f(x)| \left| \sum_{\gamma \in \Delta} c_\gamma \overline{\gamma(x)} \right|^m.$$

By assumption we can bound $|f(x)| \leq |f(x)| \nu(x)^{1/2}$, and therefore by the Cauchy-Schwarz inequality the right-hand side is bounded above by

$$\|f\|_2 \left(\sum_x \nu(x) \left|\sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}\right|^{2m}\right)^{1/2}.$$

Squaring and simplifying, we deduce that

$$\eta^{2m} \left|\Delta\right|^{2m} \frac{\|f\|_1^2}{\|f\|_2^2} \leq \sum_x \nu(x) \left|\sum_{\gamma \in \Delta} c_\gamma \overline{\gamma(x)}\right|^{2m}.$$

Expanding out the power, the right-hand side is equal to

$$\sum_x \nu(x) \sum_{\gamma_1,\dots,\gamma_{2m}} c_{\gamma_1}\cdots \overline{c_{\gamma_{2m}}}(\overline{\gamma_1}\cdots \gamma_{2m})(x).$$

Changing the order of summation this is equal to

$$\sum_{\gamma_1,\dots,\gamma_{2m}} c_{\gamma_1}\cdots \overline{c_{\gamma_{2m}}} \hat{\nu}(\gamma_1\cdots \overline{\gamma_{2m}}).$$

The result follows by the triangle inequality.

Lemma 2.8. Let G be a finite abelian group and $f : G \to \mathbb{C}$. Let $\Delta \subseteq \Delta_{\eta}(f)$. Then, for any $m \ge 1$.

$$N^{-1}\eta^{2m}\frac{\|f\|_1^2}{\|f\|_2^2}\left|\Delta\right|^{2m} \leq E_{2m}(\Delta).$$

Proof. Apply Lemma 2.7 with $\nu \equiv 1$, and use the fact that $\sum_x \lambda(x)$ is N if $\lambda \equiv 1$ and 0 otherwise.

Lemma 2.9. If $A \subset G$ and $m \ge 1$ then

$$E_{2m}(A) = \sum_x 1_A^{(m)}(x)^2.$$

Proof. Expand out definitions.

Lemma 2.10. If $A \subseteq G$ is dissociated then $E_{2m}(A) \leq (32em |A|)^m$.

Proof. By Lemma 2.9 and Lemma 2.3

$$\begin{split} E_{2m}(A) &= \left\| \prod_{\gamma} \left| \hat{1}_{A}(\gamma) \right|^{2m} \\ &= \left\| \hat{1}_{A} \right\|_{2m}^{2m} \\ &\leq (4\sqrt{2em})^{2m} \| \hat{1}_{A} \|_{2}^{2m} \\ &= (32em)^{m} \| 1_{A} \|_{2}^{2m} \\ &= (32em)^{m} \left| A \right|^{m} \end{split}$$

Lemma 2.11. If $A \subseteq G$ contains no dissociated set with $\geq K + 1$ elements then there is $A' \subseteq A$ of size $|A'| \leq K$ such that

$$A \subseteq \left\{ \sum_{a \in A'} c_a a : c_a \in \{-1, 0, 1\} \right\}.$$

Proof. Let $A' \subseteq A$ be a maximal dissociated subset (this exists and is non-empty, since trivially any singleton is dissociated). We have $|A'| \leq K$ by assumption.

Let S be the span on the right-hand side. It is obvious that $A' \subseteq S$. Suppose that $x \in A \setminus A'$. Then $A' \cup \{x\}$ is not dissociated by maximality. Therefore there exists some $y \in G$ and two distinct sets $B, C \subseteq A' \cup \{x\}$ such that

$$\sum_{b \in B} b = y = \sum_{c \in C} c.$$

If $x \notin B$ and $x \notin C$ then this contradicts the dissociativity of A'. If $x \in B$ and $x \in C$ then we have

$$\sum_{b \in B \setminus x} b = y - x = \sum_{c \in C \setminus x} c,$$

again contradicting the dissociativity of A'. Without loss of generality, therefore, $x \in B$ and $x \notin C$. Therefore

$$x = \sum_{c \in C} c - \sum_{b \in B \setminus x} b$$

which is in the span as required.

Theorem 2.12 (Chang's lemma). Let G be a finite abelian group and $f: G \to \mathbb{C}$. Let $\eta > 0$ and $\alpha = N^{-1} \|f\|_1^2 / \|f\|_2^2$. There exists some $\Delta \subseteq \Delta_\eta(f)$ such that

$$|\Delta| \le \lceil e\mathcal{L}(\alpha)\eta^{-2} \rceil$$

and

$$\Delta_\eta(f) \subseteq \left\{ \sum_{\gamma \in \Delta} c_\gamma \gamma : c_\gamma \in \{-1,0,1\} \right\}.$$

Proof. By Lemma 2.11 it suffices to show that $\Delta_{\eta}(f)$ contains no dissociated set with at least

$$K = \lceil e\mathcal{L}(\alpha)\eta^{-2}\rceil + 1$$

many elements. Suppose not, and let $\Delta \subseteq \Delta_{\eta}(f)$ be a dissociated set of size K. Then by Lemma 2.10 we have, for any $m \ge 1$,

$$E_{2m}(\Delta) \le m! K^m$$

On the other hand, by Lemma 2.8,

$$\eta^{2m} \alpha K^{2m} \le E_{2m}(\Delta).$$

Rearranging these bounds, we have

$$K^m \leq m! \alpha^{-1} \eta^{-2m} \leq m^m \alpha^{-1} \eta^{-2m}.$$

Therefore $K \leq \alpha^{-1/m} m \eta^{-2}$. This is a contradiction to the choice of K if we choose $m = \mathcal{L}(\alpha)$, since $\alpha^{-1/m} \leq e$.

Unbalancing

Lemma 3.1. For any function $f: G \to \mathbb{R}$ and integer $k \ge 0$

$$\mathbb{E}_x f \circ f(x)^k \ge 0.$$

Proof. Test.

Lemma 3.2. Let $\epsilon \in (0,1)$ and $\nu : G \to \mathbb{R}_{\geq 0}$ be some probability measure such that $\hat{\nu} \geq 0$. Let $f : G \to \mathbb{R}$. If $||f \circ f||_{p(\nu)} \geq \epsilon$ for some $p \geq 1$ then $||f \circ f + 1||_{p'(\nu)} \geq 1 + \frac{1}{2}\epsilon$ for $p' = 120\epsilon^{-1}\log(3/\epsilon)$.

Proof. Up to gaining a factor of 5 in p', we can assume that $p \ge 5$ is an odd integer. Since the Fourier transforms of f and ν are non-negative,

$$\mathbb{E}\nu f^p = \hat{\nu} * \hat{f}^{(p)}(0_{\widehat{G}}) \ge 0.$$

It follows that, since $2 \max(x, 0) = x + |x|$ for $x \in \mathbb{R}$,

$$2\langle \max(f,0), f^{p-1}\rangle_{\nu} = \mathbb{E}\nu f^p + \langle \left|f\right|, f^{p-1}\rangle_{\nu} \geq \|f\|_{p(\nu)}^p \geq \epsilon^p.$$

Therefore, if $P = \{x : f(x) \ge 0\}$, then $\langle 1_P, f^p \rangle_{\nu} \ge \frac{1}{2} \epsilon^p$. Furthermore, if $T = \{x \in P : f(x) \ge \frac{3}{4}\epsilon\}$ then $\langle 1_{P \setminus T}, f^p \rangle_{\nu} \le \frac{1}{4} \epsilon^p$, and hence by the Cauchy-Schwarz inequality,

$$\nu(T)^{1/2} \|f\|_{2p(\nu)}^p \ge \langle 1_T, f^p \rangle_{\nu} \ge \frac{1}{4} \epsilon^p.$$

On the other hand, by the triangle inequality

$$\|f\|_{2p(\nu)} \leq 1 + \|f+1\|_{2p(\nu)} \leq 3,$$

or else we are done, with p' = 2p. Hence $\nu(T) \ge (\epsilon/3)^{3p}$. It follows that, for any $p' \ge 1$,

$$\|f+1\|_{p'(\nu)} \ge \langle 1_T, |f+1|^{p'} \rangle_{\nu}^{1/p'} \ge (1+\frac{3}{4}\epsilon)(\epsilon/3)^{3p/p'}.$$

The desired bound now follows if we choose $p' = 24\epsilon^{-1}\log(3/\epsilon)p$, using $1 - x \le e^{-x}$. \Box

Dependent random choice

Lemma 4.1. Let $p \ge 2$ be an even integer. Let $B_1, B_2 \subseteq G$ and $\mu = \mu_{B_1} \circ \mu_{B_2}$. For any finite set $A \subseteq G$ and function $f: G \to \mathbb{R}_{\ge 0}$ there exist $A_1 \subseteq B_1$ and $A_2 \subseteq B_2$ such that

$$\langle \mu_{A_1}\circ \mu_{A_2},f\rangle \|\mathbf{1}_A\circ \mathbf{1}_A\|_{p(\mu)}^p\leq 2\langle (\mathbf{1}_A\circ \mathbf{1}_A)^p,f\rangle_\mu$$

and

$$\min\left(\frac{|A_1|}{|B_1|}, \frac{|A_2|}{|B_2|}\right) \geq \frac{1}{4} \left|A\right|^{-2p} \|\mathbf{1}_A \circ \mathbf{1}_A\|_{p(\mu)}^{2p}$$

Proof. First note that the statement is trivially true (with $A_1 = B_1$ and $A_2 = B_2$, say) if $\|1_A \circ 1_A\|_{p(\mu)}^p = 0$. We can therefore assume this is $\neq 0$. For $s \in G^p$ let $A_1(s) = B_1 \cap (A + s_1) \cap \dots \cap (A + s_p)$, and similarly for $A_2(s)$. Note that

$$\begin{split} \langle (1_A \circ 1_A)^p, f \rangle_\mu &= \sum_x \mu_{B_1} \circ \mu_{B_2}(x) (1_A \circ 1_A(x))^p f(x) \\ &= \sum_{b_1, b_2} \mu_{B_1}(b_1) \mu_{B_2}(b_2) 1_A \circ 1_A (b_1 - b_2)^p f(b_1 - b_2) \\ &= \sum_{b_1, b_2} \mu_{B_1}(b_1) \mu_{B_2}(b_2) \left(\sum_{t \in G} 1_{A+t}(b_1) 1_{A+t}(b_2) \right)^p f(b_1 - b_2) \\ &= \sum_{b_1, b_2} \mu_{B_1}(b_1) \mu_{B_2}(b_2) \sum_{s \in G^p} 1_{A_1(s)}(b_1) 1_{A_2(s)}(b_2) f(b_1 - b_2) \\ &= |B_1|^{-1} |B_2|^{-1} \sum_{s \in G^p} \langle 1_{A_1(s)} \circ 1_{A_2(s)}, f \rangle. \end{split}$$

In particular, applying this with $f \equiv 1$ we see that

$$\left\| 1_{A} \circ 1_{A} \right\|_{p(\mu)}^{p} = \left| B_{1} \right|^{-1} \left| B_{2} \right|^{-1} \sum_{s} \left| A_{1}(s) \right| \left| A_{2}(s) \right|$$

and

$$\frac{\langle (1_A \circ 1_A)^p, f \rangle_{\mu}}{\|1_A \circ 1_A\|_{p(\mu)}^p} = \frac{\sum_s \langle 1_{A_1(s)} \circ 1_{A_2(s)}, f \rangle}{\sum_s |A_1(s)| \, |A_2(s)|} = \eta,$$

say. Let M > 0 be some parameter, and let

$$g(s) = \begin{cases} 1 & \text{ if } 0 < |A_1(s)| \, |A_2(s)| < M^2 \text{ and} \\ 0 & \text{ otherwise.} \end{cases}$$

Then we have

$$\sum_{s} g(s) \left| A_1(s) \right| \left| A_2(s) \right| < \sum_{s} M \left| A_1(s) \right|^{1/2} \left| A_2(s) \right|^{1/2}$$

To see why, note first that each summand on the left-hand side is \leq the corresponding summand on the right-hand side, arguing by cases on whether g(s) = 1 or not. It therefore suffices to show that there exists some s such that the summand on the left-hand side is < the corresponding summand on the right-hand side.

If g(s) = 0 for all s then choose some s such that $|A_1(s)| |A_2(s)| \ge M^2$ (this must exist or else $|A_1(s)| |A_2(s)| = 0$ for all s, but then $||1_A \circ 1_A||_{p(\mu)}^p = 0$ by the above calculation). Otherwise, choose some s such that g(s) = 1, and note that for this s we have, by definition of s,

$$|A_1(s)| \, |A_2(s)| < M \, |A_1(s)|^{1/2} \, |A_2(s)|^{1/2}$$

We now choose

$$M = \frac{1}{2} |A|^{-p} (|B_1| |B_2|)^{1/2} ||1_A \circ 1_A ||_{p(\mu)}^p,$$

so that, by the Cauchy-Schwarz inequality,

$$\begin{split} \sum_{s} g(s) \left| A_{1}(s) \right| \left| A_{2}(s) \right| &< M \sum_{s} \left| A_{1}(s) \right|^{1/2} \left| A_{2}(s) \right|^{1/2} \\ &\leq M \left(\sum_{s} \sum_{x \in G} 1_{A_{1}(s)}(x) \right)^{1/2} \left(\sum_{s} \sum_{x \in G} 1_{A_{2}(s)}(x) \right)^{1/2} \\ &= M \left| A \right|^{p} \left(\left| B_{1} \right| \left| B_{2} \right| \right)^{1/2} \\ &= \frac{1}{2} \sum_{s} \left| A_{1}(s) \right| \left| A_{2}(s) \right| \end{split}$$

and so

$$\sum_{s} (1 - g(s)) \left| A_1(s) \right| \left| A_2(s) \right| > \frac{1}{2} \sum_{s} \left| A_1(s) \right| \left| A_2(s) \right|$$

whence

$$\sum_{s} \langle 1_{A_1(s)} \circ 1_{A_2(s)}, f \rangle = \eta \sum |A_1(s)| \, |A_2(s)| < 2\eta \sum_{s} |A_1(s)| \, |A_2(s)| \, (1 - g(s)).$$

In particular there must exist some s such that

$$\left< \mathbf{1}_{A_1(s)} \circ \mathbf{1}_{A_2(s)}, f \right> < 2\eta \left| A_1(s) \right| \left| A_2(s) \right| (1-g(s)).$$

We claim this s meets the requirements. The first is satisfied since the right-hand side is $\leq 2\eta |A_1(s)| |A_2(s)|$. The second is satisfied since the left-hand side is trivially ≥ 0 and hence such an s must satisfy g(s) = 0, whence either $|A_1(s)| |A_2(s)| \geq M^2$, that is,

$$|A_1(s)| \, |A_2(s)| \geq \frac{1}{4} \, |A|^{-2p} \, |B_1| \, |B_2| \, \|\mathbf{1}_A \circ \mathbf{1}_A\|_{p(\mu)}^{2p}$$

or $|A_1(s)| |A_2(s)| = 0$, which can't happen because then the right-hand side is = 0. The final bound now follows since $xy \le \min(x, y)$ when $x, y \le 1$.

Lemma 4.2. Let $\epsilon, \delta > 0$ and $p \ge \max(2, \epsilon^{-1} \log(2/\delta))$ be an even integer. Let $B_1, B_2 \subseteq G$, and let $\mu = \mu_{B_1} \circ \mu_{B_2}$. For any finite set $A \subseteq G$, if

$$S = \{ x \in G : 1_A \circ 1_A(x) > (1-\epsilon) \| 1_A \circ 1_A \|_{p(\mu)} \},$$

then there are $A_1\subseteq B_1$ and $A_2\subseteq B_2$ such that

$$\langle \mu_{A_1}\circ \mu_{A_2}, 1_S\rangle \geq 1-\delta$$

and

$$\min\left(\frac{|A_1|}{|B_1|},\frac{|A_2|}{|B_2|}\right) \geq \frac{1}{4} \left|A\right|^{-2p} \|\mathbf{1}_A \circ \mathbf{1}_A\|_{p(\mu)}^{2p}.$$

Proof. Apply Lemma 4.1 with $f = 1_{G \setminus S}$. This produces some $A_1 \subseteq B_1$ and $A_2 \subseteq B_2$ such that

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_{G \backslash S} \rangle \leq 2 \frac{\langle (\mathbf{1}_A \circ \mathbf{1}_A)^p, \mathbf{1}_{G \backslash S} \rangle_\mu}{\|\mathbf{1}_A \circ \mathbf{1}_A\|_{p(\mu)}^p}$$

and

$$\min\left(\frac{|A_1|}{|B_1|}, \frac{|A_2|}{|B_2|}\right) \ge \frac{1}{4} |A|^{-2p} \|\mathbf{1}_A \circ \mathbf{1}_A\|_{p(\mu)}^{2p}.$$

It then suffices to note that

$$\langle \mu_{A_1}\circ \mu_{A_2}, 1_S\rangle = 1 - \langle \mu_{A_1}\circ \mu_{A_2}, 1_{G\backslash S}\rangle$$

and by definition of S we have

$$\langle (1_A \circ 1_A)^p, 1_{G \backslash S} \rangle_{\mu} \leq (1-\epsilon)^p \| 1_A \circ 1_A \|_{p(\mu)}^p \sum_x \mu(x) = (1-\epsilon)^p \| 1_A \circ 1_A \|_{p(\mu)}^p.$$

Now use the fact that $p \ge \epsilon^{-1} \log(2/\delta)$ together with the inequality $1 - x \le e^{-x}$ to deduce that the right-hand side is $\le \frac{\delta}{2} \| 1_A \circ 1_A \|_{p(\mu)}^p$.

Corollary 4.3. Let $\epsilon, \delta > 0$ and $p \ge \max(2, \epsilon^{-1} \log(2/\delta))$ be an even integer and $\mu \equiv 1/N$. If $A \subseteq G$ has density α and

$$S=\{x:\mu_A\circ\mu_A(x)\geq (1-\epsilon)\|\mu_A\circ\mu_A\|_{p(\mu)}\}$$

then there are $A_1, A_2 \subseteq G$ such that

$$\langle \mu_{A_1}\circ \mu_{A_2}, 1_S\rangle \geq 1-\delta$$

and both A_1 and A_2 have density

$$\geq \frac{1}{4}\alpha^{2p}.$$

Proof. We apply Lemma 4.2 with $B_1 = B_2 = G$. It remains to note that

$$\|\mathbf{1}_A \circ \mathbf{1}_A\|_{p(\mu)} \geq \|\mathbf{1}_A \circ \mathbf{1}_A\|_{1(\mu)} = |A|^2/N$$

Finite field model

Theorem 5.1. If $A_1, A_2, S \subseteq \mathbb{F}_q^n$ are such that A_1 and A_2 both have density at least α then there is a subspace V of codimension

$$\operatorname{codim}(V) \leq 2^{27} \mathcal{L}(\alpha)^2 \mathcal{L}(\epsilon \alpha)^2 \epsilon^{-2}$$

such that

$$\left| \left\langle \mu_V \ast \mu_{A_1} \ast \mu_{A_2}, 1_S \right\rangle - \left\langle \mu_{A_1} \ast \mu_{A_2}, 1_S \right\rangle \right| \leq \epsilon.$$

Proof. (In this proof we write $G = \mathbb{F}_q^n$.) Let $k = \lceil \mathcal{L}(\epsilon \alpha/4) \rceil$. Note that $|A_1 + G| = |G| \le \alpha^{-1}|A|$. Furthermore, $|A_2|/|S| \ge \alpha$. Therefore by Theorem 1.8 there exists some $T \subseteq G$ with

$$|T| \geq \exp(-2^{16}\mathcal{L}(\alpha)^2k^2\epsilon^{-2})|S|$$

such that

$$\|\mu_T^{(k)}*\mu_{A_1}*\mu_{A_2}\circ 1_S-\mu_{A_1}*\mu_{A_2}\circ 1_S\|_\infty\leq \epsilon/4.$$

Let $\Delta = \Delta_{1/2}(\mu_T)$ and

$$V = \{ x \in G : \gamma(x) = 1 \text{ for all } \gamma \in \Delta \}.$$

Note that

$$\langle \mu_V \ast \mu_{A_1} \ast \mu_{A_2}, 1_S \rangle = \langle \mu_V, \mu_{A_1} \ast \mu_{A_2} \circ 1_S \rangle = \frac{1}{|V|} \sum_{v \in V} \mu_{A_1} \ast \mu_{A_2} \circ 1_S(v)$$

and

$$\langle \mu_{A_1} \ast \mu_{A_2}, 1_S \rangle = \mu_{A_1} \ast \mu_{A_2} \circ 1_S(0).$$

Therefore

$$\left| \left\langle \mu_{V} \ast \mu_{A_{1}} \ast \mu_{A_{2}}, 1_{S} \right\rangle - \left\langle \mu_{A_{1}} \ast \mu_{A_{2}}, 1_{S} \right\rangle \right| \leq \frac{1}{|V|} \sum_{v \in V} \left| \mu_{A_{1}} \ast \mu_{A_{2}} \circ 1_{S}(v) - \mu_{A_{1}} \ast \mu_{A_{2}} \circ 1_{S}(0) \right|.$$

In particular it suffices to show that, for any $v \in V$,

$$\left| \mu_{A_1} \ast \mu_{A_2} \circ 1_S(v) - \mu_{A_1} \ast \mu_{A_2} \circ 1_S(0) \right| \leq \epsilon.$$

By the triangle inequality and construction of T, it suffices to show that

$$\left| \mu_T^{(k)} * \mu_{A_1} * \mu_{A_2} \circ \mathbf{1}_S(v) - \mu_T^{(k)} * \mu_{A_1} * \mu_{A_2} \circ \mathbf{1}_S(0) \right| \le \epsilon/2.$$

By the Fourier transform we have, for any $x \in G$,

$$\mu_T^{(k)}*\mu_{A_1}*\mu_{A_2}\circ 1_S(x)=\frac{1}{N}\sum_{\gamma\in\widehat{G}}\widehat{\mu_T}(\gamma)^k\widehat{\mu_{A_1}}(\gamma)\widehat{\mu_{A_2}}(\gamma)\widehat{1_{-S}}(\gamma)\gamma(x).$$

Therefore the left-hand side of the desired inequality is, by the triangle inequality, at most

$$\frac{1}{N}\sum_{\gamma\in\widehat{G}}\left|\widehat{\mu_{T}}(\gamma)\right|^{k}\left|\widehat{\mu_{A_{1}}}(\gamma)\widehat{\mu_{A_{2}}}(\gamma)\widehat{1_{-S}}(\gamma)\right|\left|\gamma(v)-1\right|.$$

By choice of $v \in V$ the summand vanishes when $\gamma \in \Delta$. When $\gamma \notin \Delta$ the summand is bounded above by

$$2^{1-k} \left| \widehat{\mu_{A_1}}(\gamma) \widehat{\mu_{A_2}}(\gamma) \widehat{\mathbf{1}_{-S}}(\gamma) \right|.$$

Therefore the left-hand side of the desired inequality is at most

$$2^{1-k}\frac{1}{N}\sum_{\gamma}\left|\widehat{\mu_{A_1}}(\gamma)\widehat{\mu_{A_2}}(\gamma)\widehat{1_{-S}}(\gamma)\right| \leq 2^{1-k}\left|S\right|\frac{1}{N}\sum_{\gamma}\left|\widehat{\mu_{A_1}}(\gamma)\widehat{\mu_{A_2}}(\gamma)\right|$$

using the trivial bound $|\widehat{1_S}| \leq |S|$. By the Cauchy-Schwarz inequality the sum on the right is at most

$$\left(\sum_{\gamma} \left|\widehat{\mu_{A_1}}\right|^2\right)^{1/2} \left(\sum_{\gamma} \left|\widehat{\mu_{A_2}}\right|^2\right)^{1/2}$$

.

By Parseval's identity this is at most α^{-1} . Therefore the desired inequality follows from

$$2^{1-k} |S| \frac{1}{N} \alpha^{-1} \le 2^{1-k} \alpha^{-1} \le \epsilon/2.$$

It remains to check the codimension of V. For this, let $\Delta' \subseteq \Delta$ be as provided by Chang's lemma, Lemma 2.12, so that

$$\Delta \subseteq \left\{ \sum_{\gamma \in \Delta'} c_\gamma \gamma : c_\gamma \in \{-1,0,1\} \right\}.$$

Let

$$W = \{ x \in G : \gamma(x) = 1 \text{ for all } \gamma \in \Delta' \}.$$

It follows that $W \leq V$, so it suffices to bound the codimension of W. This we can bound trivially using the bound from Chang's lemma and the fact that $\mathcal{L}(\delta) = \log(e^2/\delta) \leq 2 + \log(1/\delta) \leq 4\log(1/\delta)$, provided $\log(1/\delta) \geq 1$, so

$$|\Delta'| \leq \lceil 4e\mathcal{L}(\delta) \rceil \leq 2^7 \log(1/\delta),$$

where

$$\delta = |T| / N \ge \exp(-2^{16} \mathcal{L}(\alpha)^2 k^2 \epsilon^{-2}),$$

 \mathbf{SO}

$$\operatorname{codim}(V) \leq |\Delta'| \leq 2^{23} \mathcal{L}(\alpha)^2 k^2 \epsilon^{-2} \leq 2^{25} \mathcal{L}(\alpha)^2 \mathcal{L}(\epsilon \alpha/4)^2 \epsilon^{-2},$$

and now use $\mathcal{L}(\epsilon \alpha/4) \leq 2\mathcal{L}(\epsilon \alpha)$, say.

Lemma 5.2. For any function $f: G \to \mathbb{C}$ and integer $k \ge 1$

$$||f * f||_{2k} \le ||f \circ f||_{2k}$$

Proof. To finish, similar trick to unbalancing.

Lemma 5.3. For any function f with $\sum f(x) = 1$

$$f * f - 1/N = (f - 1/N) * (f - 1/N).$$

Proof. Expand everything out.

Lemma 5.4. For any function f with $\sum f(x) = 1$

$$f \circ f - 1/N = (f - 1/N) \circ (f - 1/N).$$

Proof. Expand everything out.

Lemma 5.5. Let $\epsilon > 0$ and $\mu \equiv 1/N$. If $A, C \subseteq G$, where C has density at least γ , and

$$|N\langle \mu_A * \mu_A, \mu_C \rangle - 1| > \epsilon$$

 $\textit{then, if } f = (\mu_A - 1/N), \ \|f \circ f\|_{p(\mu)} \geq \epsilon/2N \textit{ for } p = 2\lceil \mathcal{L}(\gamma) \rceil.$

Proof. By Hölder's inequality, for any $p \ge 1$

$$\epsilon < |N\langle \mu_A * \mu_A - 1/N, \mu_C\rangle| \le \|\mu_A * \mu_A - 1/N\|_p \gamma^{-1/p} N^{1-1/p} N^$$

In particular if we choose $p = 2\lceil \mathcal{L}(\gamma) \rceil$ then $\gamma^{-1/p} \leq e^{1/2} \leq 2$ and so we deduce that, by Lemma 5.3,

$$||f * f||_p \ge \frac{1}{2} \epsilon N^{1/p-1}.$$

It remains to use Lemmas 5.3 and 5.4 and apply Lemma 5.2, and note that we can pass from the L^p norm to the $L^p(\mu)$ norm losing a factor of $N^{1/p}$.

Proposition 5.6. Let $\epsilon \in (0,1)$. If $A, C \subseteq \mathbb{F}_q^n$, where C has density at least γ , and

 $|N\langle \mu_A * \mu_A, \mu_C \rangle - 1| > \epsilon$

then there is a subspace V of codimension

$$\leq 2^{171} \epsilon^{-24} \mathcal{L}(\alpha)^4 \mathcal{L}(\gamma)^4.$$

such that $\|1_A * \mu_V\|_{\infty} \ge (1 + \epsilon/32)\alpha$.

Proof. By Lemma 5.5, if $f = \mu_A - 1/N$,

$$\|f\circ f\|_{p(\mu)} \geq \epsilon/2N,$$

where $p = 2\lceil \mathcal{L}(\gamma) \rceil \leq 4\mathcal{L}(\gamma)$. By Lemma 3.2 there exists some p' such that

$$p' \leq 128\epsilon^{-1}\log(96/\epsilon)\mathcal{L}(\gamma)$$

such that

$$\|f \circ f + 1/N\|_{p'(\mu)} \ge (1 + \epsilon/4)/N.$$

By Lemma 5.4 $f \circ f + 1/N = \mu_A \circ \mu_A$. Let $q = 2\lceil p' + 2^8 \epsilon^{-2} \log(64/\epsilon) \rceil$. By Corollary 4.3, there are A_1, A_2 , both of density $\geq \alpha^{2q}$ such that

$$\langle \mu_{A_1}\circ \mu_{A_2}, 1_S\rangle \geq 1-\epsilon/32$$

where

$$S = \{ x : \mu_A \circ \mu_A(x) \ge (1 - \epsilon/16) \| \mu_A \circ \mu_A \|_{q(\mu)} \}.$$

Since

$$\|\mu_A \circ \mu_A\|_{q(\mu)} \ge \|\mu_A \circ \mu_A\|_{p'(\mu)} \ge (1 + \epsilon/4)/N$$

we know

$$S\subseteq S'=\{x:\mu_A\circ\mu_A(x)\geq (1+\epsilon/8)/N\}$$

By Theorem 5.1 (applied with ϵ replaced by $\epsilon/32$) there is a subspace V of codimension

 $<2^{37}\mathcal{L}(\alpha^{2q})^2\mathcal{L}(\epsilon\alpha^{2q}/32)^2\epsilon^{-2}$

such that

$$\left< \mu_V \ast \mu_{A_1} \circ \mu_{A_2}, 1_{S'} \right> \geq 1 - \tfrac{1}{16} \epsilon.$$

Using $\mathcal{L}(xy) \leq x^{-1}\mathcal{L}(y)$ we have

$$\mathcal{L}(\epsilon \alpha^{2q}/32) \le 32\epsilon^{-1}\mathcal{L}(\alpha^{2q}),$$

and we also use $\mathcal{L}(x^y) \leq y\mathcal{L}(x)$ to simplify the codimension bound to

$$\leq 2^{51} q^4 \mathcal{L}(\alpha)^4 \epsilon^{-4}.$$

We further note that (using $\log x \le x$ say)

$$q \le 2^{10} p' \epsilon^{-2} \log(64/\epsilon) \le 2^{30} \epsilon^{-5} \mathcal{L}(\gamma).$$

Therefore the desired codimension bound follows. Finally, by definition of S', it follows that

$$\begin{split} (1+\epsilon/32)/N &\leq ((1+\epsilon/8)/N)(1-\epsilon/16) \\ &\leq \langle \mu_V * \mu_{A_1} \circ \mu_{A_2}, \mu_A \circ \mu_A \rangle \\ &\leq \|\mu_V * \mu_A\|_{\infty} \|\mu_A * \mu_{A_2} \circ \mu_{A_1}\|_{\Sigma} \\ &= \|\mu_V * 1_A\|_{\infty} |A|^{-1}, \end{split}$$

and the proof is complete.

Lemma 5.7. If $A \subseteq G$ has no non-trivial three-term arithmetic progressions and G has odd order then

$$\langle \mu_A * \mu_A, \mu_{2 \cdot A} \rangle = 1/ |A|^2$$

Proof. Expand out using definitions.

Theorem 5.8. Let q be an odd prime power. If $A \subseteq \mathbb{F}_q^n$ with $\alpha = |A|/q^n$ has no non-trivial three-term arithmetic progressions then

$$n \ll \mathcal{L}(\alpha)^9.$$

Proof. Let $t \ge 0$ be maximal such that there is a sequence of subspaces $\mathbb{F}_q^n = V_0 \ge \cdots \ge V_t$ and associated $A_i \subseteq V_i$ with $A_0 = A$ such that

- 1. for $0 \leq i \leq t$ there exists x_i such that $A_i \subseteq A x_i$,
- 2. with $\alpha_{i} = |A_{i}| / |V_{i}|$ we have

$$\alpha_{i+1} \geq \frac{65}{64} \alpha_i$$

for $0 \leq i < t$, and

3.

$$\operatorname{codim}(V_{i+1}) \le \operatorname{codim}(V_i) + O(\mathcal{L}(\alpha)^8)$$

for $0 \le i < t$. (here the second summand should be replaced with whatever explicit codimension bound we get from the above).

Note this is well-defined since t = 0 meets the requirements, and this process is finite and $t \ll \mathcal{L}(\alpha)$, since $\alpha_i \leq 1$ for all *i*. Therefore

$$\operatorname{codim}(V_t) \ll \mathcal{L}(\alpha)^9$$

Suppose first that

$$|V_t|\langle \mu_{A_t}*\mu_{A_t},\mu_{2\cdot A_t}\rangle < 1/2.$$

In this case we now apply Proposition 5.6 to $A_t \subseteq V_t$ with $\epsilon = 1/2$ (note that $N = |V_t|$ and all inner product, μ etc, are relative to the ambient group V_t now). Therefore there is a subspace $V \leq V_t$ of codimension (relative to V_t) of $\ll \mathcal{L}(\alpha)^8$ such that there exists some $x \in V_t$ with

$$\frac{|(A_t-x)\cap V|}{|V|} = \mathbf{1}_{A_t}*\mu_V(x) = \|\mathbf{1}_{A_t}*\mu_V\|_\infty \geq (1+1/64)\alpha_t,$$

which contradicts the maximality of t, letting $V_{t+1}=V$ and $A_{t+1}=(A_t-x)\cap V_t.$ Therefore

$$|V_t|\langle \mu_{A_t} * \mu_{A_t}, \mu_{2 \cdot A_t} \rangle \ge 1/2.$$

By Lemma 5.7 the left-hand side is equal to $|V_t|/|A_t|^2$, and therefore

$$\alpha^2 \le \alpha_t^2 \le 2/|V_t|$$

By the codimension bound the right-hand side is at most

$$2q^{O(\mathcal{L}(\alpha)^9)-n}$$

If $\alpha^2 \leq 2q^{-n/2}$ we are done, otherwise we deduce that $\mathcal{L}(\alpha)^9 \gg n$ as required.

Bohr sets

Definition 6.1 (Bohr sets). Let $\nu : \widehat{G} \to \mathbb{R}$. The corresponding Bohr set is defined to be

$$Bohr(\nu) = \{x \in G : |1 - \gamma(x)| \le \nu(\gamma) \text{ for all } \gamma \in \Gamma\}.$$

The rank of ν , denoted by $\operatorname{rk}(\nu)$, is defined to be the size of the set of those $\gamma \in \widehat{G}$ such that $\nu(\gamma) < 2$.

(Basic API facts: Bohr sets are symmetric and contain 0. Also that, without loss of generality, we can assume ν takes only values in $\mathbb{R}_{\geq 0}$ - I think it might be easier to have the definition allow arbitrary real values, and then switch to non-negative only in proofs where convenient. Or could have the definition only allow non-negative valued functions in the first place.)

Lemma 6.2. If $\rho \in (0,1)$ and $\nu : \widehat{G} \to \mathbb{R}$ then

$$|\operatorname{Bohr}(\rho \cdot \nu)| \ge (\rho/4)^{\operatorname{rk}(\nu)} |\operatorname{Bohr}(\nu)|.$$

Proof. There are at most $\lceil 4/\rho \rceil$ many z_i such that if $|1-w| \le \nu(\gamma)$ then $|z_i - w| \le \rho\nu(\gamma)/2$ for some *i*. Let $\Gamma = \{\gamma : \nu(\gamma) < 2\}$ and define a function $f : \operatorname{Bohr}(\nu) \to \lceil 2/\rho \rceil^{\operatorname{rk}(\nu)}$ where for $\gamma \in \Gamma$ we assign the γ -coordinate of f(x) as whichever *j* has $|z_j - \gamma(x)| \le \rho\nu(\gamma)/2$.

By the pigeonhole principle there must exist some (j_1, \ldots, j_d) such that $f^{-1}(j_1, \ldots, j_d)$ has size at least $(\lceil 2/\rho \rceil)^{-\mathrm{rk}(\nu)} |\mathrm{Bohr}(\nu)|$. Call this set B'. It must be non-empty, so fix some $x \in B'$. We claim that $B' - x \subseteq |\mathrm{Bohr}(\rho \cdot \nu)|$, which completes the proof.

Suppose that z = x + y with $x, y \in B'$, and fix some $\gamma \in \Gamma$. By assumption there is some $z_j \in \mathbb{C}$ such that $|z_j - \gamma(x)| \leq \rho \nu(\gamma)/2$ and $|z_j - \gamma(y)| \leq \rho \nu(\gamma)/2$. Then by the triangle inequality,

$$|1 - \gamma(y - x)| = |\gamma(x) - \gamma(y)| \le \rho \nu(\gamma)$$

and so $z = y - x \in Bohr(\rho \cdot \nu)$.

Definition 6.3 (Regularity). We say $\nu : \widehat{G} \to \mathbb{R}$ is regular if, with $d = \operatorname{rk}(\nu)$, for all $\kappa \in \mathbb{R}$ with $|\kappa| \leq 1/100d$ we have

$$(1 - 100d \left|\kappa\right|) \le \frac{\left|\operatorname{Bohr}((1 + \kappa)\nu)\right|}{\left|\operatorname{Bohr}(\nu)\right|} \le (1 + 100d \left|\kappa\right|)$$

Lemma 6.4. For any $\nu : \widehat{G} \to \mathbb{R}$ there exists $\rho \in [\frac{1}{2}, 1]$ such that $\rho \cdot \nu$ is regular.

Proof. To do.

Lemma 6.5. If B is a regular Bohr set of rank d and $\mu : G \to \mathbb{R}_{\geq 0}$ is supported on B_{ρ} , with $\rho \in (0,1)$, then п

$$\|\mu_B * \mu - \mu_B\|_1 \ll \rho d \|\mu\|_1.$$

Proof. To do.

Lemma 6.6. There is a constant c > 0 such that the following holds. Let B be a regular Bohr set of rank d and $L \geq 1$ be any integer. If $\nu : G \to \mathbb{R}_{\geq 0}$ is supported on LB_{ρ} , where $\rho \leq c/Ld, \text{ and } \|\nu\|_1 = 1, \text{ then }$

$$\mu_B \le 2\mu_{B_{1+L\rho}} * \nu.$$

Proof. To do.

Lemma 6.7. There is a constant c > 0 such that the following holds. Let B be a regular Bohr set of rank d, suppose $A \subseteq B$ has density α , let $\epsilon > 0$, and suppose $B', B'' \subseteq B_{\rho}$ where $\rho \leq c\alpha \epsilon/d$. Then either

- 1. there is some translate A' of A such that $|A' \cap B'| \ge (1-\epsilon)\alpha |B'|$ and $|A' \cap B''| \ge \epsilon$ $(1-\epsilon)\alpha |B''|, or$
- 2. $\|1_A * \mu_{B'}\|_{\infty} \ge (1 + \epsilon/2)\alpha$, or
- 3. $\|1_A * \mu_{B''}\|_{\infty} \ge (1 + \epsilon/2)\alpha$.

Proof. To do.

The integer case

Theorem 7.1. There is a constant c > 0 such that the following holds. Let $\epsilon > 0$ and $B, B' \subseteq G$ be regular Bohr sets of rank d. Suppose that $A_1 \subseteq B$ with density α_1 and A_2 is such that there exists x with $A_2 \subseteq B' - x$ with density α_2 . Let S be any set with $|S| \leq 2|B|$. There is a regular Bohr set $B'' \subseteq B'$ of rank at most

$$d + O_{\epsilon}(\mathcal{L}\alpha_1^{\ 3}\mathcal{L}\alpha_2)$$

 $and \ size$

$$|B''| \geq \exp(-O_{\epsilon}(d\mathcal{L}\alpha_{1}\alpha_{2}/d + \mathcal{L}\alpha_{1}{}^{3}\mathcal{L}\alpha_{2}\mathcal{L}\alpha_{1}\alpha_{2}/d)) |B'|$$

such that

$$\left| \left\langle \mu_{B'} \ast \mu_{A_1} \circ \mu_{A_2}, 1_S \right\rangle - \left\langle \mu_{A_1} \circ \mu_{A_2}, 1_S \right\rangle \right| \leq \epsilon.$$

Proof. To do.

Proposition 7.2. There is a constant c > 0 such that the following holds. Let $\epsilon > 0$ and $p \ge 2$ be an integer. Let $B \subseteq G$ be a regular Bohr set and $A \subseteq B$ with relative density α . Let $\nu : G \to \mathbb{R}_{\ge 0}$ be supported on B_{ρ} , where $\rho \le c\epsilon\alpha/\operatorname{rank}(B)$, such that $\|\nu\|_1 = 1$ and $\hat{\nu} \ge 0$. If

$$\|(\mu_A - \mu_B) \circ (\mu_A - \mu_B)\|_{p(\nu)} \geq \epsilon \, \mu(B)^{-1},$$

then there exists $p' \ll_{\epsilon} p$ such that

$$\|\mu_A\circ\mu_A\|_{p'(\nu)}\geq \left(1+\tfrac{1}{4}\epsilon\right)\mu(B)^{-1}.$$

Proof. To do.

Proposition 7.3. There is a constant c > 0 such that the following holds. Let $p \ge 2$ be an even integer. Let $f: G \to \mathbb{R}$, let $B \subseteq G$ and $B', B'' \subseteq B_{c/\operatorname{rank}(B)}$ all be regular Bohr sets. Then

$$\|f \circ f\|_{p(\mu_{B'} \circ \mu_{B'} \ast \mu_{B''} \circ \mu_{B''})} \geq \frac{1}{2} \|f \ast f\|_{p(\mu_B)}.$$

Proof. To do,

Proposition 7.4. There is a constant c > 0 such that the following holds. Let $\epsilon > 0$. Let $B \subseteq G$ be a regular Bohr set and $A \subseteq B$ with relative density α , and let $B' \subseteq B_{c\epsilon\alpha/\operatorname{rank}(B)}$ be a regular Bohr set and $C \subseteq B'$ with relative density γ . Either

1. $\left|\langle \mu_A * \mu_A, \mu_C \rangle - \mu(B)^{-1}\right| \leq \epsilon \mu(B)^{-1}$ or

2. there is some $p \ll \mathcal{L}\gamma$ such that $\|(\mu_A - \mu_B) * (\mu_A - \mu_B)\|_{p(\mu_{D'})} \geq \frac{1}{2}\epsilon\mu(B)^{-1}$.

Proof. To do.

Proposition 7.5. There is a constant c > 0 such that the following holds. Let $\epsilon > 0$ and $p, k \ge 1$ be integers such that (k, |G|) = 1. Let $B, B', B'' \subseteq G$ be regular Bohr sets of rank d such that $B'' \subseteq B'_{c/d}$ and $A \subseteq B$ with relative density α . If

$$\|\mu_A\circ\mu_A\|_{p(\mu_{k\cdot B'}\circ\mu_{k\cdot B'}\ast\mu_{k\cdot B''}\circ\mu_{k\cdot B''})}\geq (1+\epsilon)\,\mu(B)^{-1},$$

then there is a regular Bohr set $B'' \subseteq B''$ of rank at most

$$\operatorname{rank}(B''') \le d + O_{\epsilon}(\mathcal{L}\alpha^4 p^4)$$

and size

$$|B'''| \geq \exp(-O_\epsilon(dp\mathcal{L}\alpha/d + \mathcal{L}\alpha^5p^5))\,|B''|$$

such that

$$\|\mu_{B'''} * \mu_A\|_{\infty} \ge (1 + c\epsilon)\mu(B)^{-1}.$$

Proof. To do.

Theorem 7.6. There is a constant c > 0 such that the following holds. Let $\epsilon, \delta \in (0, 1)$ and $p, k \ge 1$ be integers such that (k, |G|) = 1. For any $A \subseteq G$ with density α there is a regular Bohr set B with

$$d = \operatorname{rank}(B) = O_{\epsilon} \left(\mathcal{L} \alpha^5 p^4 \right) \quad and \quad |B| \geq \exp \left(-O_{\epsilon, \delta} (\mathcal{L} \alpha^6 p^5 \mathcal{L} \alpha/p) \right) |G|$$

and some $A' \subseteq (A - x) \cap B$ for some $x \in G$ such that

- 1. $|A'| \ge (1 \epsilon)\alpha |B|$,
- $\begin{array}{ll} 2. \ |A' \cap B'| \geq (1-\epsilon)\alpha \, |B'|, \ where \ B' = B_\rho \ is \ a \ regular \ Bohr \ set \ with \ \rho \in (\frac{1}{2},1) \cdot c \delta \alpha/d, \\ and \end{array}$

3.

$$\|\mu_{A'} \circ \mu_{A'}\|_{p(\mu_{k \cdot B''} \circ \mu_{k \cdot B''} \ast \mu_{k \cdot B'''} \circ \mu_{k \cdot B'''})} < (1+\epsilon)\mu(B)^{-1}$$

for any regular Bohr sets $B'' = B'_{\rho'}$ and $B''' = B''_{\rho''}$ satisfying $\rho', \rho'' \in (\frac{1}{2}, 1) \cdot c\delta\alpha/d$.

Proof. To do.

Theorem 7.7. There is a constant c > 0 such that the following holds. Let $\delta, \epsilon \in (0, 1)$, let $p \ge 1$ and let k be a positive integer such that (k, |G|) = 1. There is a constant $C = C(\epsilon, \delta, k) > 0$ such that the following holds.

For any finite abelian group G and any subset $A \subseteq G$ with $|A| = \alpha |G|$ there exists a regular Bohr set B with

$$\operatorname{rank}(B) \le Cp^4 \log(2/\alpha)^{\xi}$$

and

$$|B| \ge \exp\left(-Cp^5 \log(2p/\alpha) \log(2/\alpha)^6\right) |G|$$

and $A' \subseteq (A-x) \cap B$ for some $x \in G$ such that

 $\begin{array}{l} 1. \ |A'| \geq (1-\epsilon)\alpha \, |B|, \\ \\ 2. \ |A' \cap B'| \geq (1-\epsilon)\alpha \, |B'|, \ where \ B' = B_{\rho} \ is \ a \ regular \ Bohr \ set \ with \ \rho \in (\frac{1}{2},1) \cdot c \delta \alpha / dk, \\ \\ and \\ \\ 3. \end{array}$

$$\|(\mu_{A'}-\mu_B)*(\mu_{A'}-\mu_B)\|_{p(\mu_{k\cdot B'})}\leq \epsilon \frac{|G|}{|B|}.$$

Proof. To do.

Theorem 7.8. If $A \subseteq \{1, ..., N\}$ has size $|A| = \alpha N$, then A contains at least

 $\exp(-O(\mathcal{L}\alpha^{12}))N^2$

many three-term arithmetic progressions.

Proof. To do.

Theorem 7.9. If $A \subseteq \{1, ..., N\}$ contains no non-trivial three-term arithmetic progressions then

$$|A| \le \frac{N}{\exp(-c(\log N)^{1/12})}$$

for some constant c > 0.

Proof. To do.