
Toric

Yaël Dillies, Paul Lezeau, Patrick Luo, Michał Mrugała, Justus Springer, Andrew Yang

April 7, 2025



Chapter 0

Prerequisites

0.1 Affine Monoids
Lemma 0.1.1 (Multivariate Laurent polynomials are an integral domain). Multivariate Laurent
polynomials over an integral domain are an integral domain.

Proof. Come on.

Definition 0.1.2 (Affine monoid). An affine monoid is a finitely generated commutative monoid
which is:

• cancellative: if 𝑎 + 𝑐 = 𝑏 + 𝑐 then 𝑎 = 𝑏, and

• torsion-free: if 𝑛𝑎 = 𝑛𝑏 then 𝑎 = 𝑏 (for 𝑛 ≥ 1).

Proposition 0.1.3 (Embedding an affine monoid inside a lattice).
If 𝑀 is an affine monoid, then 𝑀 can be embedded inside ℤ𝑛 for some 𝑛.

Proof. Embed 𝑀 inside its Grothendieck group 𝐺. Prove that 𝐺 is finitely generated free.

Proposition 0.1.4 (Affine monoid algebras are domains).
If 𝑅 is an integral domain 𝑀 is an affine monoid, then 𝑅[𝑀] is an integral domain and is a

finitely generated 𝑅-algebra.

Proof.
𝑖 ∶ 𝑅[𝑀] ↪ 𝑅[ℤ𝑀] injects into an integral domain so is an integral domain. It’s finitely

generated by 𝜒𝑎𝑖 where 𝒜 = {𝑎1, … , 𝑎𝑠} is a finite generating set for 𝑀 .

Definition 0.1.5 (Irreducible element). An element 𝑥 of a monoid 𝑀 is irreducible if 𝑥 = 𝑦 + 𝑧
implies 𝑦 = 0 or 𝑧 = 0.

Proposition 0.1.6 (Irreducible elements lie in all sets generating a salient monoid).
If 𝑀 is a monoid with a single unit, and 𝑆 is a set generating 𝑀 , then 𝑆 contains all

irreducible elements of 𝑀 .

Proof. Assume 𝑝 is an irreducible element. Since 𝑆 generates 𝑀 , write

𝑝 = ∑
𝑖

𝑎𝑖
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where the 𝑎𝑖 are finitely many elements (not necessarily distinct) elements of 𝑆. Since 𝑝 is
irreducible, we must have

𝑝 = 𝑎𝑖 ∈ 𝑆
for some 𝑖.
Proposition 0.1.7 (A salient finitely generated monoid has finitely many irreducible elements).

If 𝑀 is a finitely generated monoid with a single unit, then only finitely many elements of 𝑀
are irreducible.

Proof.
Let 𝑆 be a finite set generating 𝑀 . Write 𝐼 the set of irreducible elements. By Proposition

0.1.6, 𝐼 ⊆ 𝑆. Hence 𝐼 is finite.

Proposition 0.1.8 (A salient finitely generated cancellative monoid is generated by its irre-
ducible elements).

If 𝑀 is a finitely generated cancellative monoid with a single unit, then 𝑀 is generated by its
irreducible elements.

Proof. We do not follow the proof from [1].
Let 𝑆 be a finite minimal generating set and assume for contradiction that 𝑟 ∈ 𝑆 is reducible,

say 𝑟 = 𝑎 + 𝑏 where 𝑎, 𝑏 are non-units. Write

𝑎 = ∑
𝑠∈𝑆

𝑚𝑠𝑠, 𝑏 = ∑
𝑠∈𝑆

𝑛𝑠𝑠

for some 𝑚𝑠, 𝑛𝑠 ∈ ℕ, so that
𝑟 = ∑

𝑠∈𝑆
(𝑚𝑠 + 𝑛𝑠)𝑠.

We distinguish three cases

• 𝑚𝑟 + 𝑛𝑟 = 0. Then
𝑟 = ∑

𝑠∈𝑆∖{𝑟}
(𝑚𝑠 + 𝑛𝑠)𝑠 ∈ ⟨𝑆 ∖ {𝑟}⟩

contradicting the minimality of 𝑆.

• 𝑚𝑟 + 𝑛𝑟 = 1. Then

0 = ∑
𝑠∈𝑆∖{𝑟}

(𝑚𝑠 + 𝑛𝑠)𝑠 ⟹ ∀𝑠 ∈ 𝑆 ∖ {𝑟}, 𝑚𝑠𝑠 = 𝑛𝑠𝑠 = 0

Furthermore, either 𝑚𝑟 = 0 or 𝑛𝑟 = 0, so 𝑎 = 0 or 𝑏 = 0, contradicting the fact that 𝑎 and
𝑏 are non-units.

• 𝑚𝑟 + 𝑛𝑟 ≥ 2. Then
0 = 𝑟 + ∑

𝑠∈𝑆∖{𝑟}
(𝑚𝑠 + 𝑛𝑠)𝑠

and 𝑟 = 0, contradicting the minimality of 𝑆 once again.
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0.2 Tensor Product
Lemma 0.2.1 (The tensor product of linearly independent families). If 𝑓 and 𝑔 are linearly in-
dependent families of points in semimodules 𝑀 and 𝑁 , then 𝑖𝑗 ↦ 𝑓𝑖⊗𝑔𝑗 is a linearly independent
family of points in 𝑀 ⊗ 𝑁 .

Proof. Assume
∑
𝑖,𝑗

𝑐𝑖,𝑗𝑓𝑖 ⊗ 𝑔𝑗 = ∑
𝑖,𝑗

𝑑𝑖,𝑗𝑓𝑖 ⊗ 𝑔𝑗

Then

∑
𝑖

𝑓𝑖 ⊗ (∑
𝑗

𝑐𝑖,𝑗𝑔𝑗) = ∑
𝑖

𝑓𝑖 ⊗ (∑
𝑗

𝑑𝑖,𝑗𝑔𝑗)

Since 𝑓 is linearly independent,
∑

𝑗
𝑐𝑖,𝑗𝑔𝑗 = ∑

𝑗
𝑑𝑖,𝑗𝑔𝑗

for every 𝑖. Since 𝑔 is linearly independent, 𝑐𝑖,𝑗 = 𝑑𝑖,𝑗 for all 𝑖, 𝑗, as wanted.

0.3 Hopf algebras
0.3.1 Group-like elements
Definition 0.3.1 (Group-like elements). An element 𝑎 of a coalgebra 𝐴 is group-like if it is a
unit and Δ(𝑎) = 𝑎 ⊗ 𝑎, where Δ is the comultiplication map.

Lemma 0.3.2 (Bialgebra homs preserve group-like elements).
Let 𝑓 ∶ 𝐴 → 𝐵 be a bi-algebra hom. If 𝑎 ∈ 𝐴 is group-like, then 𝑓(𝑎) is group-like too.

Proof. 𝑎 is a unit, so 𝑓(𝑎) is a unit too. Then

𝑓(𝑎) ⊗ 𝑓(𝑎) = (𝑓 ⊗ 𝑓)(Δ𝐴(𝑎)) = Δ𝐵(𝑓(𝑎))

so 𝑓(𝑎) is group-like.

Lemma 0.3.3 (Independence of group-like elements).
The group-like elements in 𝐴 are linearly independent.

Proof.
See Lemma 4.23 in [2].

Lemma 0.3.4 (Group-like elements in a group algebra).
The group-like elements of 𝑘[𝑀] are exactly the image of 𝑀 .

Proof.
See Lemma 12.4 in [2].
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0.3.2 The group algebra functor
Proposition 0.3.5 (The antipode is a antihomomorphism). If 𝐴 is a 𝑅-Hopf algebra, then the
antipode map 𝑠 ∶ 𝐴 → 𝐴 is anti-commutative, ie 𝑠(𝑎∗𝑏) = 𝑠(𝑏)∗𝑠(𝑎). If further 𝐴 is commutative,
then 𝑠(𝑎 ∗ 𝑏) = 𝑠(𝑎) ∗ 𝑠(𝑏).
Proof. Any standard reference will have a proof.

Proposition 0.3.6 (Hopf algebras are cogroup objects in the category of algebras). From a
𝑅-Hopf algebra, one can build a cogroup object in the category of 𝑅-algebras.

From a cogroup object in the category of 𝑅-algebras, one can build a 𝑅-Hopf algebra.

Proof.
Turn the arrows around.

Definition 0.3.7 (The group algebra functor).
For a commutative ring 𝑅, we have a functor 𝐺 ⇝ 𝑅[𝐺] ∶ Grp → Hopf𝑅.

Proposition 0.3.8 (The group algebra functor is fully faithful).
For a field 𝐾, the functor 𝐺 ⇝ 𝐾[𝐺] from the category of groups to the category of Hopf

algebras over 𝐾 is fully faithful.

Proof.
It is clearly faithful. Now for the full part, if 𝑓 ∶ 𝐾[𝐺] → 𝐾[𝐻] is a Hopf algebra hom, then

we get a series of maps

𝐺 ≃ group-like elements of 𝑅[𝐺] → group-like elements of 𝑅[𝐻] ≃ 𝐻

and each map separately is clearly multiplicative.

0.4 Group Schemes
0.4.1 Correspondence between Hopf algebras and affine group schemes
We want to show that Hopf algebras correspond to affine group schemes. This can easily be
done categorically assuming both categories on either side are defined thoughtfully. However,
the categorical version will not be workable with if we do not also have links to the non-categorical
notions. Therefore, one solution would be to build the left, top and right edges of the following
diagram so that the bottom edge can be obtained by composing the three:

Bundling/unbundling Hopf algebras

We have already done the left edge in the previous section.

Spec of a Hopf algebra

Now let’s do the top edge.

Proposition 0.4.1 (Sliced adjoint functors). If 𝑎 ∶ 𝐹 ⊢ 𝐺 is an adjunction between 𝐹 ∶ 𝐶 → 𝐷
and 𝐺 ∶ 𝐷 → 𝐶 and 𝑋 ∶ 𝐶, then there is an adjunction between 𝐹/𝑋 ∶ 𝐶/𝑋 → 𝐷/𝐹(𝑋) and
𝐺/𝑋 ∶ 𝐷/𝐹(𝑋) → 𝐶/𝑋.

Proof. See https://ncatlab.org/nlab/show/sliced+adjoint+functors+–+section.
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Proposition 0.4.2 (Limit-preserving functors lift to over categories). If 𝐹 ∶ 𝐶 → 𝐷 is a functor
preserving limits of shape 𝐽 , then so is the obvious functor 𝐶/𝑋 → 𝐷/𝐹(𝑋).
Proof. Hopefully easy.

Proposition 0.4.3 (Fully faithful product-preserving functors lift to group objects). If a finite-
products-preserving functor 𝐹 ∶ 𝐶 → 𝐷 is fully faithful, then so is Grp(𝐹) ∶ Grp 𝐶 → Grp 𝐷.

Proof. Faithfulness is immediate.
For fullness, assume 𝑓 ∶ 𝐹(𝐺) → 𝐹(𝐻) is a morphism. By fullness of 𝐹 , find 𝑔 ∶ 𝐺 → 𝐻 such

that 𝐹(𝑔) = 𝑓 . 𝑔 is a morphism because we can pull back each diagram from 𝐷 to 𝐶 along 𝐹
which is faithful.

Definition 0.4.4 (Spec as a functor on algebras). Spec is a contravariant functor from the
category of 𝑅-algebras to the category of schemes over Spec𝑅.

Proposition 0.4.5 (Spec as a functor on algebras is fully faithful).
Spec is a fully faithful contravariant functor from the category of 𝑅-algebras to the category

of schemes over Spec𝑅, preserving all limits.

Proof.
Spec ∶ Ring → Sch is a fully faithful contravariant functor which preserves all limits, hence

so is Spec ∶ Ring𝑅 → AffSchSpec 𝑅 by Proposition 0.4.2 (alternatively, by Proposition 0.4.1).

Definition 0.4.6 (Spec as a functor on Hopf algebras).
Spec is a fully faithful contravariant functor from the category of 𝑅-algebras to the category

of group schemes over Spec𝑅.

Proposition 0.4.7 (Spec as a functor on Hopf algebras is fully faithful).
Spec is a fully faithful contravariant functor from the category of 𝑅-Hopf algebras to the

category of group schemes over Spec𝑅.

Proof.
Spec ∶ Ring𝑅 → SchSpec 𝑅 is a fully faithful contravariant functor preserving all limits accord-

ing to Proposition 0.4.4, therefore Spec ∶ Hopf𝑅 → GrpSchSpec 𝑅 too is fully faithful according
to 0.4.3.

0.4.2 Essential image of Spec on Hopf algebras
Finally, let’s do the right edge.

Proposition 0.4.8 (Essential image of a sliced functor). If 𝐹 ∶ 𝐶 → 𝐷 is a fully faithful functor
between cartesian-monoidal categories, then 𝐹/𝑋 ∶ 𝐶/𝑋 hom 𝐷/𝐹(𝑋) has the same essential
image as 𝐹 .

Proof. Transfer all diagrams.

Proposition 0.4.9 (Equivalences lift to group object categories). If 𝑒 ∶ 𝐶 ⋍ 𝐷 is an equivalence
of cartesian-monoidal categories, then Grp(𝑒) ∶ Grp(𝐶) ⋍ Grp(𝐷) too is an equivalence of
categories.

Proof. Transfer all diagrams.
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Proposition 0.4.10 (Essential image of a functor on group objects). If 𝐹 ∶ 𝐶 → 𝐷 is a fully
faithful functor between cartesian-monoidal categories, then Grp(𝐹) ∶ Grp(𝐶) hom Grp(𝐷) has
the same essential image as 𝐹 .

Proof.
Transfer all diagrams.

Proposition 0.4.11 (Essential image of Spec on algebras).
The essential image of Spec ∶ Ring𝑅 → SchSpec 𝑅 is precisely affine schemes over Spec 𝑅.

Proof.
Direct consequence of Proposition 0.4.8.

Proposition 0.4.12 (Essential image of Spec on Hopf algebras).
The essential image of Spec ∶ Hopf𝑅 → GrpSchSpec 𝑅 is precisely affine group schemes over

Spec 𝑅.

Proof.
Direct consequence of Propositions 0.4.10 and 0.4.11.

0.4.3 Diagonalisable groups
Definition 0.4.13.

For a commutative group 𝐺 we define 𝐷𝑅(𝐺) as the spectrum Spec 𝑅[𝐺] of the group algebra
𝑅[𝐺].
Definition 0.4.14.

An algebraic group 𝐺 over Spec 𝑅 is diagonalisable if it is isomorphic to 𝐷𝑅(𝐺) for some
commutative group 𝐺.

Theorem 0.4.15.
An algebraic group 𝐺 over a field 𝑘 is diagonalizable if and only if group-like elements span

Γ(𝐺).
Proof.

See Theorem 12.8 in [2].

Theorem 0.4.16.
For a field 𝑘, 𝐷𝑘 is a fully faithful contravariant functor from the category of commutative

groups to the category of group schemes over Spec 𝑘.

Proof.
Compose Propositions 0.4.7 and 0.3.8.
Also see Theorem 12.9(a) in [2]. See SGA III Exposé VIII for a proof that works for 𝑅 an

arbitrary commutative ring in place of 𝑘.
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Chapter 1

Affine Toric Varieties

1.1 Introduction to Affine Toric Varieties
1.1.1 The Torus
Definition 1.1.1 (The split torus). The split torus 𝔾𝑚

𝑛 over a scheme 𝑆 is the pullback of
Spec ℤ[𝑥±1

1 , … , 𝑥±1
𝑛 ] along the unique map 𝑆 → Spec ℤ.

Lemma 1.1.2 (The split torus over Spec 𝑅).
The split torus over Spec 𝑅 is isomorphic to Spec(𝑅[𝑥±1

1 , … , 𝑥±1
𝑛 ]).

Proof. Ask any toddler on the street.

Definition 1.1.3 (Characters of a group scheme).
For a group scheme 𝐺 over 𝑆, the character lattice of 𝐺 is

𝑋(𝐺) ∶= HomGrpSch𝑆
(𝐺, 𝔾𝑚).

An element 𝑋(𝐺) is (unsurprisingly) called a character.

Proposition 1.1.4 (Character lattice of the torus).
Characters of the torus over a field 𝑘 are isomorphic to ℤ𝑛. 𝑋(𝔾𝑚

𝑛) = ℤ𝑛.

Proof.
By Propositions 1.1.2 and 0.4.16 in turn, we have

𝑋(𝔾𝑚
𝑛) = HomGrpSch(𝔾𝑚

𝑛, 𝔾𝑚) = Hom(𝑘[ℤ], 𝑘[ℤ𝑛]) = Hom(ℤ, ℤ𝑛) = ℤ𝑛.

Proposition 1.1.5 (The image of a torus is a torus).
Let 𝑇1 and 𝑇2 be split tori over a field 𝑘 and let Φ ∶ 𝑇1 → 𝑇2 be a homomorphism, then Φ

factors as
𝑇1

Φ−→ 𝑇2 = 𝑇1
𝜙
−→ 𝑇 𝜄−→ 𝑇2,

where 𝑇 is a split torus, 𝜄 is a closed subgroup embedding and 𝜙 is an fpqc homomorphism.
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Proof. Let 𝑀1 = 𝑋(𝑇1), 𝑀2 = 𝑋(𝑇2). Define 𝑀 to be the image of the homomorphism 𝑀2 →
𝑀1 corresponding to Φ and take 𝑇 = 𝐷𝑘(𝑀). The homomorphisms 𝜄, 𝜙 correspond to the
canonical quotient map 𝑀2 → 𝑀 and the canonical inclusion 𝑀 → 𝑀1 respectively. Hence
Φ = 𝜄 ∘ 𝜙.

𝑀 is a subgroup of a finitely-generated free abelian group 𝑀1, hence itself a finitely-generated
free abelian group. Thus 𝑇 is a split torus.

𝜄 is a closed embedding since the corresponding ring map is a quotient map with kernel
generated by the kernel of 𝑀2 → 𝑀1.

𝜙 is affine, hence quasi-compact. A collection of coset representatives for 𝑀/𝑀1 gives a basis
for 𝑘[𝑀] as a 𝑘[𝑀1] module, hence 𝜙 is faithfully flat.

Proposition 1.1.6 (A subgroup of a torus is a torus).
Let 𝑇 be a split torus. If 𝐻 ⊆ 𝑇 is an irreducible subgroup, then 𝐻 is a split torus.

Proof.
Let 𝑀 = 𝑋(𝑇 ), 𝑁 = 𝑋(𝐻). Since 𝐻 is a closed subscheme 𝑀 → 𝑁 is surjective, so 𝑁 is

a finitely-generated abelian group. Since 𝐻 is irreducible it is connected, so 𝑁 is torsion-free,
hence free. Thus 𝐻 is a split torus.

Definition 1.1.7 (The character eigenspace).
For a finite dimensional representation of a torus 𝑇 on 𝑊 , the character eigenspace of a

character 𝜒 ∈ 𝑋(𝑇 ) is

𝑊𝑚 = {𝑤 ∈ 𝑊 ∶ 𝑡 ⋅ 𝑤 = 𝜒(𝑡) for all 𝑡 ∈ 𝑇 }.
Proposition 1.1.8 (Decomposition into character eigenspaces).

The space decomposes into the direct sum of the character eigenspaces.
Proof. TODO

Definition 1.1.9.
For a group scheme 𝐺, the cocharacter lattice of 𝐺 is HomGrpSch𝑆

(𝔾𝑚, 𝐺). An element is
called a cocharacter or one-parameter subgroup.
Definition 1.1.10 (The character-cocharacter pairing).

Character lattice and one-parameter subgroup pairing.
Proposition 1.1.11 (Cocharacter lattice of the torus).

𝑁 = Hom(𝑀, ℤ) ≅ ℤ𝑛. For 𝑢 ∈ 𝑁 we write 𝜆𝑢 for the corresponding cocharacter.
Proof.

By Propositions 1.1.2 and 0.4.16 in turn, we have

cochar(𝔾𝑚
𝑛) = HomGrpSch(𝔾𝑚, 𝔾𝑚

𝑛) = Hom(𝑘[ℤ𝑛], 𝑘[ℤ]) = Hom(ℤ𝑛, ℤ) ≅ ℤ𝑛.

1.1.2 The Definition of Affine Toric Variety
Definition 1.1.12.

A toric variety is a variety 𝑋 with
• an open embedding 𝑇 ∶= (ℂ×)𝑛 ↪ 𝑋 with dense image

• such that the natural action 𝑇 × 𝑇 → 𝑇 of the torus on itself extends to an (algebraic)
action 𝑇 × 𝑋 → 𝑋.
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1.1.3 Lattice Points
Definition 1.1.13.

Given a finite set 𝒜 = {𝑎1, … , 𝑎𝑠} ⊆ 𝑀 , define Φ𝒜 ∶ 𝑇 → 𝔸𝑠 given by Φ𝒜(𝑡) = (𝜒𝑎1(𝑡), … , 𝜒𝑎𝑠(𝑡)).
Definition 1.1.14.

𝑌𝒜 is the (Zariski) closure of im Φ𝒜 in 𝔸𝑠.

Proposition 1.1.15.
Proposition 1.1.8

Proof.
TODO

1.1.4 Toric Ideals
Proposition 1.1.16.

The ideal of the affine toric variety 𝑌𝒜 is

𝐼(𝑌𝒜) = ⟨𝑥ℓ+ − 𝑥ℓ− |ℓ ∈ 𝐿⟩

Proof. See [1].

Definition 1.1.17. The ideal 𝐼𝐿 = ⟨𝑥𝛼 − 𝑥𝛽|𝛼, 𝛽 ∈ ℕ𝑠 and 𝛼 − 𝛽 ∈ 𝐿⟩ is called the lattice
ideal of the lattice 𝐿 ⊆ ℤ𝑠.

A toric ideal is a prime lattice ideal.

Definition 1.1.18. A toric ideal is a prime lattice ideal.

Proposition 1.1.19.
Proposition 1.1.11: an ideal is toric if and only if it’s prime and generated by binomials

𝑥𝛼 − 𝑥𝛽.

Proof.

Proposition 1.1.20 (The spectrum of an affine monoid algebra is an affine toric variety).
If 𝑆 is an affine monoid, then Spec(𝕜[𝑆]) is an affine toric variety.

Proof.
Identify the torus with 𝕜[𝑥±1

1 , … , 𝑥±1
𝑛 ] using Lemma 1.1.2. 𝑖 induces a morphism 𝑇 →

Spec(𝕜[𝑆]). It’s an open embedding as 𝑖 gives the localization of 𝕜[𝑆] at 𝜒𝑎𝑖 , so im 𝑖 is an
affine open. It’s dominant as Spec(𝕜[𝑆]) is integral and so is irreducible, and im 𝑖 is open and
nonempty, so dense. The torus action is given by the natural restriction of comultiplication on
𝕜[𝑥±1

1 , … , 𝑥±1
𝑛 ] using Proposition 0.3.8.

Proposition 1.1.21 (The character lattice of the spectrum of an affine monoid algebra).
If 𝑆 is an affine monoid, then the character lattice of Spec(𝕜[𝑆]) is ℤ𝑆.

Proof. It is what it is.

Proposition 1.1.22.
If 𝑆 is an affine monoid and 𝒜 is a finite set generating 𝑆 as a monoid, then Spec(𝕜[𝑆]) = 𝑌𝒜.
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Proof.
We get a 𝕜-algebra homomorphism 𝜋 ∶ 𝕜[𝑥1, … , 𝑥𝑠] → 𝕜[ℤ𝑆] given by 𝒜; this induces a

morphism Φ𝒜 ∶ 𝑇 → 𝕜𝑠. The kernel of 𝜋 is the toric ideal of 𝑌𝒜 and 𝜋 is clearly surjective, so
𝑌𝒜 = 𝕍(ker(𝜋)) = Spec(𝕜[𝑥1, … , 𝑥𝑠]/ ker(𝜋)) = Spec(ℂ[𝑆]).
Definition 1.1.23.

Torus action on semigroup algebra

1.1.5 Equivalence of Constructions
Lemma 1.1.24.

Proof.

Theorem 1.1.25. TFAE:

1. 𝑉 is an affine toric variety.

2. 𝑉 = 𝑌𝒜 for some finite 𝒜.

3. 𝑉 is an affine variety defined by a toric ideal.

4. 𝑉 = Spec 𝕜[𝑆] for an affine monoid 𝑆.

Proof.

1.2 Cones and Affine Toric Varieties
1.2.1 Convex Polyhedral Cones
Fix a pair of dual real vector spaces 𝑀 and 𝑁 .

Definition 1.2.1 (Convex cone generated by a set). For a set 𝑆 ⊆ 𝑁 , the cone generated by
𝑆, aka cone hull of 𝑆, is

Cone(𝑆) ∶= {∑
𝑢∈𝑆

𝜆𝑢𝑢|𝜆𝑢 ≥ 0}

Definition 1.2.2 (Convex polyhedral cone).
A polyhedral cone is a set that can be written as Cone(𝑆) for some finite set 𝑆.

Definition 1.2.3 (Convex hull). For a set 𝑆 ⊆ 𝑁 , the convex hull of 𝑆 is

Conv(𝑆) ∶= {∑
𝑢∈𝑆

𝜆𝑢|𝜆𝑢 ≥ 0, ∑
𝑢

𝜆𝑢 = 1}

Definition 1.2.4 (Polytope).
A polytope is a set that can be written as Conv(𝑆) for some finite set 𝑆.
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1.2.2 Dual Cones and Faces
Definition 1.2.5 (Dual cone).

Given a polyhedral cone 𝜎 ⊆ 𝑁 , its dual cone is defined by

𝜎∨ = {𝑚 ∈ 𝑀|∀𝑢 ∈ 𝜎, ⟨𝑚, 𝑢⟩ ≥ 0}

.

Proposition 1.2.6 (Dual of a polyhedral cone).
If 𝜎 is polyhedral, then its dual 𝜎∨ is polyhedral too.

Proof. Classic. See [3] maybe.

Proposition 1.2.7 (Dual cone of a sumset).
If 𝜎1, 𝜎2 are two cones, then

(𝜎1 + 𝜎2)∨ = 𝜎∨
1 ∩ 𝜎∨

2 .
Proof. Classic. See [3] maybe.

Proposition 1.2.8 (Double dual of a polyhedral cone).
If 𝜎 is polyhedral, then 𝜎∨∨ = 𝜎.

Proof. Classic. See [3] maybe.

Given 𝑚 ≠ 0 in 𝑀 , we get the hyperplane

𝐻𝑚 = {𝑢 ∈ 𝑁|⟨𝑚, 𝑢⟩ = 0} ⊆ 𝑁

and the closed half-space
𝐻+

𝑚 = {𝑢 ∈ 𝑁|⟨𝑚, 𝑢⟩ ≥ 0} ⊆ 𝑁.
Definition 1.2.9 (Face of a cone). If 𝜎 is a cone, then a subset of 𝜎 is a face iff it is the
intersection of 𝜎 with some halfspace. We write this 𝜏 ⪯ 𝜎. If furthermore 𝜏 ≠ 𝜎, we call 𝜏 a
proper face and write 𝜏 ≺ 𝜎.

Definition 1.2.10 (Edge of a cone).
A dimension 1 face of a cone is called an edge.

Definition 1.2.11 (Facet of a cone).
A codimension 1 face of a cone is called a facet.

Lemma 1.2.12 (Face of a polyhedral cone).
If 𝜎 is a polyhedral cone, then every face of 𝜎 is a polyhedral cone.

Lemma 1.2.13 (Intersection of faces).
If 𝜎 is a polyhedral cone, then the intersection of two faces of 𝜎 is a face of 𝜎.

Proof. Classic. See [3] maybe.

Lemma 1.2.14 (Face of a face).
A face of a face of a polyhedral cone 𝜎 is again a face of 𝜎.

Proof. Classic. See [3] maybe.

Lemma 1.2.15.
Let 𝜏 be a face of a polyhedral cone 𝜎. If 𝑣, 𝑤 ∈ 𝜎 and 𝑣 + 𝑤 ∈ 𝜏 , then 𝑣, 𝑤 ∈ 𝜏 .

11



Proof. Classic. See [3] maybe.

Proposition 1.2.16 (Dual cone of the intersection of halfspaces).
If 𝜎 = 𝐻+

𝑚1
∩ ⋯ ∩ 𝐻+

𝑚𝑠
, then

𝜎∨ = Cone(𝑚1, … , 𝑚𝑠).

Proof. Classic. See [3] maybe.

Proposition 1.2.17 (Facets of a full dimensional cone).
If 𝜎 is a full dimensional cone, then facets of 𝜎 are of the form 𝐻𝑚 ∩ 𝜎.

Proof. Classic. See [3] maybe.

Proposition 1.2.18 (Intersection of facets containing a face).
Every proper face 𝜏 ≺ 𝜎 of a polyhedral cone 𝜎 is the intersection of the facets of 𝜎 containing

𝜏 .

Proof. Classic. See [3] maybe.

Definition 1.2.19 (Dual face).
Given a cone 𝜎 and a face 𝜏 ⪯ 𝜎, the dual face to 𝜏 is

𝜏∗ ∶= 𝜎∨ ∩ 𝜏⟂

Proposition 1.2.20 (The dual face is a face of the dual).
If 𝜏 ⪯ 𝜎, then 𝜏∗ ⪯ 𝜎∨.

Proof. Classic. See [3] maybe.

Proposition 1.2.21 (The double dual of a face).
If 𝜏 ⪯ 𝜎, then 𝜏∗∗ = 𝜏 .

Proof.
Classic. See [3] maybe.

Proposition 1.2.22 (The dual of a face is antitone).
If 𝜏 ′ ⪯ 𝜏 ⪯ 𝜎, then 𝜏 ′ ⪯ 𝜏 .

Proof. Classic. See [3] maybe.

Proposition 1.2.23 (The dimension of the dual of a face).
If 𝜏 ⪯ 𝜎, then

dim 𝜏 + dim 𝜏∗ = dim 𝑁.
Proof. Classic. See [3] maybe.
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1.2.3 Relative Interiors
Definition 1.2.24 (Relative interior). The relative interior, aka intrinsic interior, of a cone
𝜎 is the interior of 𝜎 as a subset of its span.

Lemma 1.2.25 (The relative interior in terms of the inner product).
For a cone 𝜎,

𝑢 ∈ Relint(𝜎) ⟺ ∀𝑚 ∈ 𝜎∨ ∖ 𝜎⟂, ⟨𝑚, 𝑢⟩ > 0
Proof. Classic. See [3] maybe.

Lemma 1.2.26 (Relative interior of a dual face).
If 𝜏 ⪯ 𝜎 and 𝑚 ∈ 𝜎∨, then

𝑚 ∈ Relint(𝜏∗) ⟺ 𝜏 = 𝐻𝑚 ∩ 𝜎

Proof. Classic. See [3] maybe.

Lemma 1.2.27 (Minimal face of a cone).
If 𝜎 is a cone, then 𝑊 ∶= 𝜎 ∩ (−𝜎) is a subspace. Furthermore, 𝑊 = 𝐻𝑚 ∩ 𝜎 whenever

𝑚 ∈ Relint(𝜎∨).
Proof. Classic. See [3] maybe.

1.2.4 Strong Convexity
Definition 1.2.28 (Salient cones). A cone 𝜎 is salient, aka pointed or strongly convex, if
𝜎 ∩ (−𝜎) = {0}.

Proposition 1.2.29 (Alternative definitions of salient cones).
The following are equivalent

1. 𝜎 is salient

2. {0} ⪯ 𝜎
3. 𝜎 contains no positive dimensional subspace

4. dim 𝜎∨ = dim 𝑁
Proof. Classic. See [3] maybe.

1.2.5 Separation
Lemma 1.2.30 (Separation lemma).

Let 𝜎1, 𝜎2 be polyhedral cones meeting along a common face 𝜏 . Then

𝜏 = 𝐻𝑚 ∩ 𝜎1 = 𝐻𝑚 ∩ 𝜎2

for any 𝑚 ∈ Relint(𝜎∨
1 ∩ (−𝜎2)∨).

Proof.
See [1].
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1.2.6 Rational Polyhedral Cones
Let 𝑀 and 𝑁 be dual lattices with associated vector spaces 𝑀ℝ ∶= 𝑀 ⊗ℤ ℝ, 𝑁ℝ ∶= 𝑁 ⊗ℤ ℝ.

Definition 1.2.31 (Rational cone).
A cone 𝜎 ⊆ 𝑁ℝ is rational if 𝜎 = Cone(𝑆) for some finite set 𝑆 ⊆ 𝑁 .

Lemma 1.2.32 (Faces of a rational cone).
If 𝜏 ⪯ 𝜎 is a face of a rational cone, then 𝜏 itself is rational.

Proof. Classic. See [3] maybe.

Lemma 1.2.33 (The dual of a rational cone).
𝜎∨ is a rational cone iff 𝜎 is.

Proof. Classic. See [3] maybe.

Definition 1.2.34 (Ray generator).
If 𝜌 is an edge of a rational cone 𝜎, then the monoid 𝜌 ∩ 𝑁 is generated by a unique element

𝑢𝜌 ∈ 𝜌 ∩ 𝑁 , which we call the ray generator of 𝜌.

Definition 1.2.35 (Minimal generators).
The minimal generators of a rational cone 𝜎 are the ray generators of its edges.

Lemma 1.2.36 (A rational cone is generated by its minimal generators).
A salient convex rational polyhedral cone is generated by its minimal generators.

Proof. Classic. See [3] maybe.

Definition 1.2.37 (Regular cone).
A salient rational polyhedral cone 𝜎 is regular, aka smooth, if its minimal generators form

part of a ℤ-basis of 𝑁 .

Definition 1.2.38 (Simplicial cone).
A salient rational polyhedral cone 𝜎 is simplicial if its minimal generators are ℝ-linearly

independent.

1.2.7 Semigroup Algebras and Affine Toric Varieties
Definition 1.2.39 (Dual lattice of a cone).

If 𝜎 ⊆ 𝑁ℝ is a polyhedral cone, then the lattice points

𝑆𝜎 ∶= 𝜎∨ ∩ 𝑀

form a monoid.

Proposition 1.2.40 (Gordan’s lemma).
𝑆𝜎 is finitely generated as a monoid.

Proof.
See [1].

Definition 1.2.41 (Affine toric variety of a rational polyhedral cone).
𝑈𝜎 ∶= Spec ℂ[𝑆𝜎] is an affine toric variety.
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Theorem 1.2.42 (Dimension of the affine toric variety of a rational polyhedral cone).

dim 𝑈𝜎 = dim 𝑁 ⟺ the torus of 𝑈𝜎 is 𝑇𝑁 = 𝑁 ⊗[ ℤ]ℂ∗ ⟺ 𝜎 is salient.
Proof.

See [1].

Proposition 1.2.43 (The irreducible elements of the dual lattice of a cone).
If 𝜎 ⊆ 𝑁ℝ is salient of maximal dimension, then the irreducible elements of 𝑆𝜎 are precisely

the minimal generators of 𝜎∨.

Proof.
See [1].

15



Bibliography

[1] David A. Cox, John B. Little, and H. K. Schenck. Toric Varieties. Graduate Studies in
Mathematics. American Mathematical Society, 2011.

[2] J. S. Milne. Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2017.

[3] Tadao Oda. Convex bodies and algebraic geometry. Springer, 1988.

16


	Prerequisites
	Affine Monoids
	Tensor Product
	Hopf algebras
	Group-like elements
	The group algebra functor

	Group Schemes
	Correspondence between Hopf algebras and affine group schemes
	Essential image of Spec on Hopf algebras
	Diagonalisable groups


	Affine Toric Varieties
	Introduction to Affine Toric Varieties
	The Torus
	The Definition of Affine Toric Variety
	Lattice Points
	Toric Ideals
	Equivalence of Constructions

	Cones and Affine Toric Varieties
	Convex Polyhedral Cones
	Dual Cones and Faces
	Relative Interiors
	Strong Convexity
	Separation
	Rational Polyhedral Cones
	Semigroup Algebras and Affine Toric Varieties



