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Chapter 1

Almost-Periodicity

Lemma 1.1 (Marcinkiewicz-Zygmund inequality). Let m ≥ 1. If f : G → R is such that
Exf(x) = 0 and |f(x)| ≤ 2 for all x then

Ex1,...,xn

∣∣∣∣∣
n∑

i=1

f(xi)

∣∣∣∣∣
2m

≤ (4mn)m.

Proof. Let S be the left-hand side. Since 0 = Eyf(y) we have, by the triangle inequality,
and Hölder’s inequality,

S = Ex1,...,xn

∣∣∣∣∣∑
i

f(xi)− Eyif(yi)

∣∣∣∣∣
2m

(1.1)

= Ex1,...,xn

∣∣∣∣∣Eyi

(∑
i

f(xi)− f(yi)

)∣∣∣∣∣
2m

(1.2)

≤ Ex1,...,yn

∣∣∣∣∣∑
i

f(xi)− f(yi)

∣∣∣∣∣
2m

(1.3)

Changing the role of xi and yi makes no difference here, but multiplies the i summand
by {−1,+1}, and therefore for any ϵi ∈ {−1,+1},

S ≤ Ex1,...,yn

∣∣∣∣∣∑
i

ϵi(f(xi)− f(yi))

∣∣∣∣∣
2m

.

In particular, if we sample ϵi ∈ {−1,+1} uniformly at random, then

S ≤ EϵiEx1,...,yn

∣∣∣∣∣∑
i

ϵi(f(xi)− f(yi))

∣∣∣∣∣
2m

.

We now change the order of expectation and consider the expectation over just ϵi, viewing
the f(xi)−f(yi) = zi, say, as fixed quantities. For any zi we can expand Eϵi |

∑
i ϵizi|2m and

then bound it from above, using the triangle inequality and |zi| ≤ 4, by

42m
∑

k1+···+kn=2m

(
2m

k1, . . . , kn

) ∣∣∣Eϵk1
1 · · · ϵkn

n

∣∣∣ .
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The inner expectation vanishes unless each ki is even, when it is trivially one. Therefore the
above quantity is exactly ∑

l1+···+ln=m

(
2m

2l1, . . . , 2ln

)
≤ mmnm,

since for any l1 + · · ·+ ln = m,(
2m

2l1, . . . , 2ln

)
≤ mm

(
m

l1, . . . , ln

)
.

This can be seen, for example, by writing both sides out using factorials, yielding

(2m)!

(2l1)! · · · (2ln)!
≤ (2m)!

2mm!

m!

l1! · · · ln!
≤ mm m!

l1! · · · ln!
.

Lemma 1.2 (Complex-valued Marcinkiewicz-Zygmund inequality). Let m ≥ 1. If f : G →
C is such that Exf(x) = 0 and |f(x)| ≤ 2 for all x then

Ex1,...,xn

∣∣∣∣∣
n∑

i=1

f(xi)

∣∣∣∣∣
2m

≤ (8mn)m.

Proof. Test.

Lemma 1.3. Let ϵ > 0 and m ≥ 1. Let A ⊆ G and f : G → C. If k ≥ 64mϵ−2 then the set

L = {a⃗ ∈ Ak : ‖ 1
k

k∑
i=1

f(x− ai)− µA ∗ f‖2m ≤ ϵ‖f‖2m}.

has size at least |A|k/2.

Proof. Note that if a ∈ A is chosen uniformly at random then, for any fixed x ∈ G,

Ef(x− ai) =
1

|A|
∑
a∈A

f(x− a) =
1

|A|
1A ∗ f(x) = µA ∗ f(x).

Therefore, if we choose a1, . . . , ak ∈ A independently uniformly at random, for any fixed
x ∈ G and 1 ≤ i ≤ k, the random variable f(x − ai) − f ∗ µA(x) has mean zero. By the
Marcinkiewicz-Zygmund inequality Lemma 1.1, therefore,

E

∣∣∣∣∣1k∑
i

f(x− ai)− f ∗ µA(x)

∣∣∣∣∣
2m

≤

(16m/k)mk−1E
∑
i

|f(x− ai)− f ∗ µA(x)|2m .

We now sum both sides over all x ∈ G. By the triangle inequality, for any fixed 1 ≤ i ≤ k
and ai ∈ A,∑

x∈G

|f(x− ai)− f ∗ µA(x)|2m ≤ 22m−1
∑
x∈G

|f(x− ai)|2m +
∑
x∈G

|f ∗ µA(x)|2m

≤ 22m−1
(
‖f‖2m2m + ‖f ∗ µA‖2m2m

)
.
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We note that ‖µA‖1 = 1
|A|
∑

x∈A 1A(x) = |A| / |A| = 1, and hence by Young’s inequality,
‖f ∗ µA‖2m ≤ ‖f‖2m, and so∑

x∈G

|f(x− ai)− f ∗ µA(x)|2m ≤ 22m‖f‖2m2m.

It follows that

Ea1,...,ak∈A‖
1

k

∑
i

τaif − f ∗ µA‖2m2m ≤ (64m/k)m‖f‖2m2m.

In particular, if k ≥ 64ϵ−2m then the right-hand side is at most ( ϵ2‖f‖2m)2m as required.

Lemma 1.4. Let A ⊆ G and f : G → C. Let ϵ > 0 and m ≥ 1 and k ≥ 1. Let

L = {a⃗ ∈ Ak : ‖ 1
k

k∑
i=1

f(x− ai)− µA ∗ f‖2m ≤ ϵ‖f‖2m}.

If t ∈ G is such that a⃗ ∈ L and a⃗+ (t, . . . , t) ∈ L then

‖τt(µA ∗ f)− µA ∗ f‖2m ≤ 2ϵ‖f‖2m.

Proof. Test.

Lemma 1.5. Let A ⊆ G and k ≥ 1 and L ⊆ Ak. Then there exists some a⃗ ∈ L such that

#{t ∈ G : a⃗+ (t, . . . , t) ∈ L} ≥ |L|
|A+ S|k

|S|.

Proof. Test.

Theorem 1.6 (Lp almost periodicity). Let ϵ ∈ (0, 1] and m ≥ 1. Let K ≥ 2 and A,S ⊆ G
with |A+ S| ≤ K|A|. Let f : G → C. There exists T ⊆ G such that

|T | ≥ K−512mϵ−2

|S|

such that for any t ∈ T we have

‖τt(µA ∗ f)− µA ∗ f‖2m ≤ ϵ‖f‖2m.

Proof. Test.

Theorem 1.7 (L∞ almost periodicity). Let ϵ ∈ (0, 1]. Let K ≥ 2 and A,S ⊆ G with
|A+ S| ≤ K|A|. Let B,C ⊆ G. Let η = min(1, |C|/|B|). There exists T ⊆ G such that

|T | ≥ K−4096⌈Lη⌉ϵ−2

|S|

such that for any t ∈ T we have

‖τt(µA ∗ 1B ∗ µC)− µA ∗ 1B ∗ µC‖∞ ≤ ϵ.
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Proof. Let T be as given in 1.6 with f = 1B and m = dLηe and ϵ = ϵ/e. (The size bound
on T follows since e2 ≤ 8.) Fix t ∈ T and let F = τt(µA ∗ 1B)− µA ∗ 1B . We have, for any
x ∈ G,

(τt(µA ∗ 1B ∗ µC)− µA ∗ 1B ∗ µC)(x) = F ∗ µC(x) =
∑
y

F (y)µC(x− y) =
∑
y

F (y)µx−C(y).

By Hölder’s inequality, this is (in absolute value), for any m ≥ 1,

‖F‖2m‖µx−C‖1+ 1
2m−1

.

By the construction of T the first factor is at most ϵ
e‖1B‖2m = ϵ

e |B|1/2m. We have by
calculation

‖µx−C‖1+ 1
2m−1

= |x− C|−1/2m = |C|−1/2m.

Therefore we have shown that

‖τt(µA ∗ 1B ∗ µC)− µA ∗ 1B ∗ µC‖∞ ≤ ϵ

e
(|C|/|B|)−1/2m.

The claim now follows since, by choice of m,

(|C|/|B|)−1/2m ≤ e

(dividing into cases as to whether η = 1 or not).

Theorem 1.8. Let ϵ ∈ (0, 1] and k ≥ 1. Let K ≥ 2 and A,S ⊆ G with |A+S| ≤ K|A|. Let
B,C ⊆ G. Let η = min(1, |C|/|B|). There exists T ⊆ G such that

|T | ≥ K−4096⌈Lη⌉k2ϵ−2

|S|

such that
‖µ(k)

T ∗ µA ∗ 1B ∗ µC − µA ∗ 1B ∗ µC‖∞ ≤ ϵ.

Proof. Let T be as in Theorem 1.7 with ϵ replaced by ϵ/k. Note that, for any x ∈ G,

µ
(k)
T ∗ µA ∗ 1B ∗ µC(x) =

1

|T |k
∑

t1,...,tk∈T

τt1+···+tkµA ∗ 1B ∗ µC(x).

It therefore suffices (by the triangle inequality) to show, for any fixed x ∈ G and t1, . . . , tk ∈
T , that with F = µA ∗ 1B ∗ µC , we have

|τt1+···+tkF (x)− F (x)| ≤ ϵ.

This follows by the triangle inequality applied k times if we knew that, for 1 ≤ l ≤ k,

|τt1+···+tlF (x)− τt1+···+tl−1
F (x)| ≤ ϵ/k.

We can write the left-hand side as

|τt1+···+tlF (x)− τt1+···+tl−1
F (x)| = |τtlF (x− t1−· · ·− t− l − 1)−F (x− t1−· · ·− t− l − 1)|.

The right-hand side is at most
‖τtlF − F‖∞

and we are done by choice of T .
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Chapter 2

Chang’s lemma

Definition 2.1 (Dissociation). We say that A ⊆ G is dissociated if, for any m ≥ 1, and
any x ∈ G, there is at most one A′ ⊂ A of size |A′| = m such that∑

a∈A′

a = x.

Lemma 2.2 (Rudin’s exponential inequality). If the discrete Fourier transform of f : G −→
C has dissociated support, then

E exp(<f) ≤ exp
(
‖f‖22
2

)
It follows that

E
x

e|f(x)| ≤ 2e∥f∥
2
2/2.

Proof. Using the convexity of t 7→ etx (for all x ≥ 0 and t ∈ [−1, 1]) we have

etx ≤ cosh(x) + t sinh(x).

It follows (taking x = |z| and t = <(z)/|z|) that, for any z ∈ C,

eℜz ≤ cosh|z|+ <(z/|z|) sinh|z|.

In particular, if cγ ∈ C with |cγ | = 1 is such that f̂(γ) = cγ |f̂(γ)|, then

eℜf(x) = exp

<
∑
γ∈Γ

f̂(γ)γ(x)


=
∏
γ∈Γ

exp
(
<f̂(γ)γ(x)

)
≤
∏
γ∈Γ

(
cosh|f̂(γ)|+ <cγγ(x) sinh|f̂(γ)|

)
.

Therefore
E
x

eℜf(x) ≤E
x

∏
γ∈Γ

(
cosh|f̂(γ)|+ <cγγ(x) sinh|f̂(γ)|

)
.
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Using <z = (z + z)/2 the product here can be expanded as the sum of

∏
γ∈Γ2

cγ
2

∏
γ∈Γ3

cγ
2

∏
γ∈Γ1

cosh|f̂(γ)|

 ∏
γ∈Γ2∪Γ3

sinh|f̂(γ)|

∑
γ∈Γ2

γ −
∑
λ∈Γ3

λ

 (x)

as Γ1 t Γ2 t Γ3 = Γ ranges over all partitions of Γ into three disjoint parts. Using the
definition of dissociativity we see that∑

γ∈Γ2

γ −
∑
λ∈Γ3

λ 6= 0

unless Γ2 = Γ3 = ∅. In particular summing this term over all x ∈ G gives 0. Therefore the
only term that survives averaging over x is when Γ1 = Γ, and so

E
x

eℜf(x) ≤
∏
γ∈Γ

cosh|f̂(γ)|.

The conclusion now follows using cosh(x) ≤ ex
2/2 and

∑
γ∈Γ|f̂(γ)|2 = ‖f‖22. The second

conclusion follows by applying it to f(x) and −f(x) and using

e|y| ≤ ey + e−y.

Lemma 2.3 (Rudin’s inequality). If the discrete Fourier transform of f : G −→ C has
dissociated support and p ≥ 2 is an integer, then ‖f‖p ≤ 4

√
pe‖f‖2.

Proof. It is enough to show that ‖<f‖p ≤ 2
√
pe‖f‖2 as then

‖f‖p ≤ ‖<f‖p + ‖i=f‖p = ‖<f‖p + ‖<(−if)‖p ≤ 4
√
pe‖f‖2

If f = 0, the result is obvious. So assume f 6= 0. ‖f‖2 > 0, so WLOG ‖f‖2 =
√
p.

Rudin’s exponential inequality for f becomes E exp |<f | ≤ 2 exp(p2 ) = (2
√
e)p. Using

xp

p! ≤ ex for positive x, we get

‖<f‖pp
pp

≤
‖<f‖pp

p!
=E |<f |p

p!
≤E exp |<f |

Rearranging, ‖<f‖p ≤ 2p
√
e = 2

√
pe‖f‖2.

Definition 2.4 (Large spectrum). Let G be a finite abelian group and f : G → C. Let
η ∈ R. The η-large spectrum is defined to be

∆η(f) = {γ ∈ Ĝ : |f̂(γ)| ≥ η‖f‖1}.

Definition 2.5 (Weighted energy). Let ∆ ⊆ Ĝ and m ≥ 1. Let ν : G → C. Then

E2m(∆; ν) =
∑

γ1,...,γ2m∈∆

|ν̂(γ1 + · · · − γ2m)| .

Definition 2.6 (Energy). Let G be a finite abelian group and A ⊆ G. Let m ≥ 1. We
define

E2m(A) =
∑

a1,...,a2m∈A

1a1+···−a2m=0.
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Lemma 2.7. Let G be a finite abelian group and f : G → C. Let ν : G → R≥0 be such that
whenever |f | 6= 0 we have ν ≥ 1. Let ∆ ⊆ ∆η(f). Then, for any m ≥ 1.

η2m
‖f‖21
‖f‖22

|∆|2m ≤ E2m(∆; ν).

Proof. By definition of ∆η(f) we know that

η‖f‖1 |∆| ≤
∑
γ∈∆

|f̂(γ)|.

There exists some cγ ∈ C with |cγ | = 1 for all γ such that

|f̂(γ)| = cγ f̂(γ) = cγ
∑
x∈G

f(x)γ(x).

Interchanging the sums, therefore,

η‖f‖1 |∆| ≤
∑
x∈G

f(x)
∑
γ∈∆

cγγ(x).

By Hölder’s inequality the right-hand side is at most(∑
x

|f(x)|

)1−1/m
∑

x

|f(x)|

∣∣∣∣∣∣
∑
γ∈∆

cγγ(x)

∣∣∣∣∣∣
m1/m

.

Taking mth powers, therefore, we have

ηm |∆|m ‖f‖1 ≤
∑
x

|f(x)|

∣∣∣∣∣∣
∑
γ∈∆

cγγ(x)

∣∣∣∣∣∣
m

.

By assumption we can bound |f(x)| ≤ |f(x)| ν(x)1/2, and therefore by the Cauchy-Schwarz
inequality the right-hand side is bounded above by

‖f‖2

∑
x

ν(x)

∣∣∣∣∣∣
∑
γ∈∆

cγγ(x)

∣∣∣∣∣∣
2m


1/2

.

Squaring and simplifying, we deduce that

η2m |∆|2m ‖f‖21
‖f‖22

≤
∑
x

ν(x)

∣∣∣∣∣∣
∑
γ∈∆

cγγ(x)

∣∣∣∣∣∣
2m

.

Expanding out the power, the right-hand side is equal to∑
x

ν(x)
∑

γ1,...,γ2m

cγ1 · · · cγ2m(γ1 · · · γ2m)(x).

Changing the order of summation this is equal to∑
γ1,...,γ2m

cγ1
· · · cγ2m

ν̂(γ1 · · · γ2m).

The result follows by the triangle inequality.
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Lemma 2.8. Let G be a finite abelian group and f : G → C. Let ∆ ⊆ ∆η(f). Then, for
any m ≥ 1.

N−1η2m
‖f‖21
‖f‖22

|∆|2m ≤ E2m(∆).

Proof. Apply Lemma 2.7 with ν ≡ 1, and use the fact that
∑

x λ(x) is N if λ ≡ 1 and 0
otherwise.

Lemma 2.9. If A ⊂ G and m ≥ 1 then

E2m(A) =
∑
x

1
(m)
A (x)2.

Proof. Expand out definitions.

Lemma 2.10. If A ⊆ G is dissociated then E2m(A) ≤ (32em |A|)m.

Proof. By Lemma 2.9 and Lemma 2.3

E2m(A) =E
γ

∣∣1̂A(γ)∣∣2m
= ‖1̂A‖2m2m

≤ (4
√
2em)2m‖1̂A‖2m2

= (32em)m‖1A‖2m2

= (32em)m |A|m

Lemma 2.11.
If A ⊆ G contains no dissociated set with ≥ K +1 elements, then there is A′ ⊆ A of size

|A′| ≤ K such that

A ⊆

{∑
a∈A′

caa : ca ∈ {−1, 0, 1}

}
.

Proof. Let A′ ⊆ A be a maximal dissociated subset (this exists and is non-empty, since
trivially any singleton is dissociated). We have |A′| ≤ K by assumption.

Let S be the span on the right-hand side. It is obvious that A′ ⊆ S. Suppose that
x ∈ A\A′. Then A′ ∪ {x} is not dissociated by maximality. Therefore there exists some
y ∈ G and two distinct sets B,C ⊆ A′ ∪ {x} such that∑

b∈B

b = y =
∑
c∈C

c.

If x 6∈ B and x 6∈ C then this contradicts the dissociativity of A′. If x ∈ B and x ∈ C then
we have ∑

b∈B\x

b = y − x =
∑

c∈C\x

c,
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again contradicting the dissociativity of A′. Without loss of generality, therefore, x ∈ B and
x 6∈ C. Therefore

x =
∑
c∈C

c−
∑

b∈B\x

b

which is in the span as required.

Theorem 2.12 (Chang’s lemma). Let G be a finite abelian group and f : G → C. Let η > 0
and α = N−1‖f‖21/‖f‖22. There exists some ∆ ⊆ ∆η(f) such that

|∆| ≤ deL(α)η−2e

and

∆η(f) ⊆

∑
γ∈∆

cγγ : cγ ∈ {−1, 0, 1}

 .

Proof. By Lemma 2.11 it suffices to show that ∆η(f) contains no dissociated set with at
least

K = deL(α)η−2e+ 1

many elements. Suppose not, and let ∆ ⊆ ∆η(f) be a dissociated set of size K. Then by
Lemma 2.10 we have, for any m ≥ 1,

E2m(∆) ≤ m!Km.

On the other hand, by Lemma 2.8,

η2mαK2m ≤ E2m(∆).

Rearranging these bounds, we have

Km ≤ m!α−1η−2m ≤ mmα−1η−2m.

Therefore K ≤ α−1/mmη−2. This is a contradiction to the choice of K if we choose m =
L(α), since α−1/m ≤ e.
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Chapter 3

Unbalancing

Lemma 3.1. For any function f : G → R and integer k ≥ 0

Exf ◦ f(x)k ≥ 0.

Proof. Test.

Lemma 3.2. Let ϵ ∈ (0, 1) and ν : G → R≥0 be some probability measure such that ν̂ ≥ 0.
Let f : G → R. If ‖f ◦ f‖p(ν) ≥ ϵ for some p ≥ 1 then ‖f ◦ f + 1‖p′(ν) ≥ 1 + 1

2ϵ for
p′ = 120ϵ−1 log(3/ϵ).

Proof. Up to gaining a factor of 5 in p′, we can assume that p ≥ 5 is an odd integer. Since
the Fourier transforms of f and ν are non-negative,

Eνfp = ν̂ ∗ f̂ (p)(0Ĝ) ≥ 0.

It follows that, since 2max(x, 0) = x+ |x| for x ∈ R,

2〈max(f, 0), fp−1〉ν = Eνfp + 〈|f | , fp−1〉ν ≥ ‖f‖pp(ν) ≥ ϵp.

Therefore, if P = {x : f(x) ≥ 0}, then 〈1P , fp〉ν ≥ 1
2ϵ

p. Furthermore, if T = {x ∈ P :
f(x) ≥ 3

4ϵ} then 〈1P\T , f
p〉ν ≤ 1

4ϵ
p, and hence by the Cauchy-Schwarz inequality,

ν(T )1/2‖f‖p2p(ν) ≥ 〈1T , fp〉ν ≥ 1
4ϵ

p.

On the other hand, by the triangle inequality

‖f‖2p(ν) ≤ 1 + ‖f + 1‖2p(ν) ≤ 3,

or else we are done, with p′ = 2p. Hence ν(T ) ≥ (ϵ/3)3p. It follows that, for any p′ ≥ 1,

‖f + 1‖p′(ν) ≥ 〈1T , |f + 1|p
′
〉1/p

′

ν ≥ (1 + 3
4ϵ)(ϵ/3)

3p/p′
.

The desired bound now follows if we choose p′ = 24ϵ−1 log(3/ϵ)p, using 1− x ≤ e−x.
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Chapter 4

Dependent random choice

Lemma 4.1. Let p ≥ 2 be an even integer. Let B1, B2 ⊆ G and µ = µB1
◦ µB2

. For any
finite set A ⊆ G and function f : G → R≥0 there exist A1 ⊆ B1 and A2 ⊆ B2 such that

〈µA1 ◦ µA2 , f〉‖1A ◦ 1A‖pp(µ) ≤ 2〈(1A ◦ 1A)p, f〉µ

and
min

(
|A1|
|B1|

,
|A2|
|B2|

)
≥ 1

4
|A|−2p ‖1A ◦ 1A‖2pp(µ).

Proof. First note that the statement is trivially true (with A1 = B1 and A2 = B2, say) if
‖1A ◦ 1A‖pp(µ) = 0. We can therefore assume this is 6= 0.

For s ∈ Gp let A1(s) = B1 ∩ (A+ s1)∩ · · · ∩ (A+ sp), and similarly for A2(s). Note that

〈(1A ◦ 1A)p, f〉µ =
∑
x

µB1
◦ µB2

(x)(1A ◦ 1A(x))pf(x)

=
∑
b1,b2

µB1(b1)µB2(b2)1A ◦ 1A(b1 − b2)
pf(b1 − b2)

=
∑
b1,b2

µB1
(b1)µB2

(b2)

(∑
t∈G

1A+t(b1)1A+t(b2)

)p

f(b1 − b2)

=
∑
b1,b2

µB1
(b1)µB2

(b2)
∑
s∈Gp

1A1(s)(b1)1A2(s)(b2)f(b1 − b2)

= |B1|−1 |B2|−1
∑
s∈Gp

〈1A1(s) ◦ 1A2(s), f〉.

In particular, applying this with f ≡ 1 we see that

‖1A ◦ 1A‖pp(µ) = |B1|−1 |B2|−1
∑
s

|A1(s)| |A2(s)|

and
〈(1A ◦ 1A)p, f〉µ
‖1A ◦ 1A‖pp(µ)

=

∑
s〈1A1(s) ◦ 1A2(s), f〉∑

s |A1(s)| |A2(s)|
= η,

say. Let M > 0 be some parameter, and let

g(s) =

{
1 if 0 < |A1(s)| |A2(s)| < M2 and
0 otherwise.
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Then we have ∑
s

g(s) |A1(s)| |A2(s)| <
∑
s

M |A1(s)|1/2 |A2(s)|1/2 .

To see why, note first that each summand on the left-hand side is ≤ the corresponding
summand on the right-hand side, arguing by cases on whether g(s) = 1 or not. It therefore
suffices to show that there exists some s such that the summand on the left-hand side is <
the corresponding summand on the right-hand side.

If g(s) = 0 for all s then choose some s such that |A1(s)| |A2(s)| ≥ M2 (this must exist
or else |A1(s)| |A2(s)| = 0 for all s, but then ‖1A ◦ 1A‖pp(µ) = 0 by the above calculation).
Otherwise, choose some s such that g(s) = 1, and note that for this s we have, by definition
of s,

|A1(s)| |A2(s)| < M |A1(s)|1/2 |A2(s)|1/2 .

We now choose
M = 1

2 |A|−p
(|B1| |B2|)1/2‖1A ◦ 1A‖pp(µ),

so that, by the Cauchy-Schwarz inequality,∑
s

g(s) |A1(s)| |A2(s)| < M
∑
s

|A1(s)|1/2 |A2(s)|1/2

≤ M

(∑
s

∑
x∈G

1A1(s)(x)

)1/2(∑
s

∑
x∈G

1A2(s)(x)

)1/2

= M |A|p (|B1| |B2|)1/2

=
1

2

∑
s

|A1(s)| |A2(s)|

and so ∑
s

(1− g(s)) |A1(s)| |A2(s)| >
1

2

∑
s

|A1(s)| |A2(s)|

whence∑
s

〈1A1(s) ◦ 1A2(s), f〉 = η
∑

|A1(s)| |A2(s)| < 2η
∑
s

|A1(s)| |A2(s)| (1− g(s)).

In particular there must exist some s such that

〈1A1(s) ◦ 1A2(s), f〉 < 2η |A1(s)| |A2(s)| (1− g(s)).

We claim this s meets the requirements. The first is satisfied since the right-hand side is
≤ 2η |A1(s)| |A2(s)|. The second is satisfied since the left-hand side is trivially ≥ 0 and
hence such an s must satisfy g(s) = 0, whence either |A1(s)| |A2(s)| ≥ M2, that is,

|A1(s)| |A2(s)| ≥
1

4
|A|−2p |B1| |B2| ‖1A ◦ 1A‖2pp(µ),

or |A1(s)| |A2(s)| = 0, which can’t happen because then the right-hand side is = 0.
The final bound now follows since xy ≤ min(x, y) when x, y ≤ 1.

12



Lemma 4.2. Let ϵ, δ > 0 and p ≥ max(2, ϵ−1 log(2/δ)) be an even integer. Let B1, B2 ⊆ G,
and let µ = µB1 ◦ µB2 . For any finite set A ⊆ G, if

S = {x ∈ G : 1A ◦ 1A(x) > (1− ϵ)‖1A ◦ 1A‖p(µ)},

then there are A1 ⊆ B1 and A2 ⊆ B2 such that

〈µA1
◦ µA2

, 1S〉 ≥ 1− δ

and
min

(
|A1|
|B1|

,
|A2|
|B2|

)
≥ 1

4
|A|−2p ‖1A ◦ 1A‖2pp(µ).

Proof. Apply Lemma 4.1 with f = 1G\S . This produces some A1 ⊆ B1 and A2 ⊆ B2 such
that

〈µA1 ◦ µA2 , 1G\S〉 ≤ 2
〈(1A ◦ 1A)p, 1G\S〉µ

‖1A ◦ 1A‖pp(µ)
and

min
(
|A1|
|B1|

,
|A2|
|B2|

)
≥ 1

4
|A|−2p ‖1A ◦ 1A‖2pp(µ).

It then suffices to note that

〈µA1
◦ µA2

, 1S〉 = 1− 〈µA1
◦ µA2

, 1G\S〉

and by definition of S we have

〈(1A ◦ 1A)p, 1G\S〉µ ≤ (1− ϵ)p‖1A ◦ 1A‖pp(µ)
∑
x

µ(x) = (1− ϵ)p‖1A ◦ 1A‖pp(µ).

Now use the fact that p ≥ ϵ−1 log(2/δ) together with the inequality 1− x ≤ e−x to deduce
that the right-hand side is ≤ δ

2‖1A ◦ 1A‖pp(µ).

Corollary 4.3. Let ϵ, δ > 0 and p ≥ max(2, ϵ−1 log(2/δ)) be an even integer and µ ≡ 1/N .
If A ⊆ G has density α and

S = {x : µA ◦ µA(x) ≥ (1− ϵ)‖µA ◦ µA‖p(µ)}

then there are A1, A2 ⊆ G such that

〈µA1
◦ µA2

, 1S〉 ≥ 1− δ

and both A1 and A2 have density
≥ 1

4
α2p.

Proof. We apply Lemma 4.2 with B1 = B2 = G. It remains to note that

‖1A ◦ 1A‖p(µ) ≥ ‖1A ◦ 1A‖1(µ) = |A|2/N.

13



Chapter 5

Finite field model

Theorem 5.1. If A1, A2, S ⊆ Fn
q are such that A1 and A2 both have density at least α then

there is a subspace V of codimension

codim(V ) ≤ 227L(α)2L(ϵα)2ϵ−2

such that
|〈µV ∗ µA1 ∗ µA2 , 1S〉 − 〈µA1 ∗ µA2 , 1S〉| ≤ ϵ.

Proof. (In this proof we write G = Fn
q .) Let k = dL(ϵα/4)e. Note that |A1 + G| = |G| ≤

α−1|A|. Furthermore, |A2|/|S| ≥ α. Therefore by Theorem 1.8 there exists some T ⊆ G
with

|T | ≥ exp(−216L(α)2k2ϵ−2)|S|

such that
‖µ(k)

T ∗ µA1
∗ µA2

◦ 1S − µA1
∗ µA2

◦ 1S‖∞ ≤ ϵ/4.

Let ∆ = ∆1/2(µT ) and

V = {x ∈ G : γ(x) = 1 for all γ ∈ ∆}.

Note that

〈µV ∗ µA1
∗ µA2

, 1S〉 = 〈µV , µA1
∗ µA2

◦ 1S〉 =
1

|V |
∑
v∈V

µA1
∗ µA2

◦ 1S(v)

and
〈µA1

∗ µA2
, 1S〉 = µA1

∗ µA2
◦ 1S(0).

Therefore

|〈µV ∗ µA1
∗ µA2

, 1S〉 − 〈µA1
∗ µA2

, 1S〉| ≤
1

|V |
∑
v∈V

|µA1
∗ µA2

◦ 1S(v)− µA1
∗ µA2

◦ 1S(0)| .

In particular it suffices to show that, for any v ∈ V ,

|µA1
∗ µA2

◦ 1S(v)− µA1
∗ µA2

◦ 1S(0)| ≤ ϵ.

By the triangle inequality and construction of T , it suffices to show that
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∣∣∣µ(k)
T ∗ µA1 ∗ µA2 ◦ 1S(v)− µ

(k)
T ∗ µA1 ∗ µA2 ◦ 1S(0)

∣∣∣ ≤ ϵ/2.

By the Fourier transform we have, for any x ∈ G,

µ
(k)
T ∗ µA1

∗ µA2
◦ 1S(x) =

1

N

∑
γ∈Ĝ

µ̂T (γ)
kµ̂A1

(γ)µ̂A2
(γ)1̂−S(γ)γ(x).

Therefore the left-hand side of the desired inequality is, by the triangle inequality, at most
1

N

∑
γ∈Ĝ

|µ̂T (γ)|k
∣∣∣µ̂A1(γ)µ̂A2(γ)1̂−S(γ)

∣∣∣ |γ(v)− 1| .

By choice of v ∈ V the summand vanishes when γ ∈ ∆. When γ 6∈ ∆ the summand is
bounded above by

21−k
∣∣∣µ̂A1(γ)µ̂A2(γ)1̂−S(γ)

∣∣∣ .
Therefore the left-hand side of the desired inequality is at most

21−k 1

N

∑
γ

∣∣∣µ̂A1(γ)µ̂A2(γ)1̂−S(γ)
∣∣∣ ≤ 21−k |S| 1

N

∑
γ

|µ̂A1(γ)µ̂A2(γ)|

using the trivial bound |1̂S | ≤ |S|. By the Cauchy-Schwarz inequality the sum on the right
is at most (∑

γ

|µ̂A1 |
2

)1/2(∑
γ

|µ̂A2 |
2

)1/2

.

By Parseval’s identity this is at most α−1. Therefore the desired inequality follows from

21−k |S| 1

N
α−1 ≤ 21−kα−1 ≤ ϵ/2.

It remains to check the codimension of V . For this, let ∆′ ⊆ ∆ be as provided by Chang’s
lemma, Lemma 2.12, so that

∆ ⊆

∑
γ∈∆′

cγγ : cγ ∈ {−1, 0, 1}

 .

Let

W = {x ∈ G : γ(x) = 1 for all γ ∈ ∆′}.
It follows that W ≤ V , so it suffices to bound the codimension of W . This we can bound
trivially using the bound from Chang’s lemma and the fact that L(δ) = log(e2/δ) ≤ 2 +
log(1/δ) ≤ 4 log(1/δ), provided log(1/δ) ≥ 1, so

|∆′| ≤ d4eL(δ)e ≤ 27 log(1/δ),

where
δ = |T | /N ≥ exp(−216L(α)2k2ϵ−2),

so
codim(V ) ≤ |∆′| ≤ 223L(α)2k2ϵ−2 ≤ 225L(α)2L(ϵα/4)2ϵ−2,

and now use L(ϵα/4) ≤ 2L(ϵα), say.

15



Lemma 5.2. For any function f : G → C and integer k ≥ 1

‖f ∗ f‖2k ≤ ‖f ◦ f‖2k.

Proof. To finish, similar trick to unbalancing.

Lemma 5.3. For any function f with
∑

f(x) = 1

f ∗ f − 1/N = (f − 1/N) ∗ (f − 1/N).

Proof. Expand everything out.

Lemma 5.4. For any function f with
∑

f(x) = 1

f ◦ f − 1/N = (f − 1/N) ◦ (f − 1/N).

Proof. Expand everything out.

Lemma 5.5. Let ϵ > 0 and µ ≡ 1/N . If A,C ⊆ G, where C has density at least γ, and

|N〈µA ∗ µA, µC〉 − 1| > ϵ

then, if f = (µA − 1/N), ‖f ◦ f‖p(µ) ≥ ϵ/2N for p = 2dL(γ)e.

Proof. By Hölder’s inequality, for any p ≥ 1

ϵ < |N〈µA ∗ µA − 1/N,µC〉| ≤ ‖µA ∗ µA − 1/N‖pγ−1/pN1−1/p.

In particular if we choose p = 2dL(γ)e then γ−1/p ≤ e1/2 ≤ 2 and so we deduce that, by
Lemma 5.3,

‖f ∗ f‖p ≥ 1
2ϵN

1/p−1.

It remains to use Lemmas 5.3 and 5.4 and apply Lemma 5.2, and note that we can pass
from the Lp norm to the Lp(µ) norm losing a factor of N1/p.

Proposition 5.6. Let ϵ ∈ (0, 1). If A,C ⊆ Fn
q , where C has density at least γ, and

|N〈µA ∗ µA, µC〉 − 1| > ϵ

then there is a subspace V of codimension

≤ 2171ϵ−24L(α)4L(γ)4.

such that ‖1A ∗ µV ‖∞ ≥ (1 + ϵ/32)α.

Proof.
By Lemma 5.5, if f = µA − 1/N ,

‖f ◦ f‖p(µ) ≥ ϵ/2N,

where p = 2dL(γ)e ≤ 4L(γ). By Lemma 3.2 there exists some p′ such that

p′ ≤ 128ϵ−1 log(96/ϵ)L(γ)

such that
‖f ◦ f + 1/N‖p′(µ) ≥ (1 + ϵ/4)/N.
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By Lemma 5.4 f ◦ f + 1/N = µA ◦ µA.
Let q = 2dp′+28ϵ−2 log(64/ϵ)e. By Corollary 4.3, there are A1, A2, both of density ≥ α2q

such that
〈µA1

◦ µA2
, 1S〉 ≥ 1− ϵ/32

where
S = {x : µA ◦ µA(x) ≥ (1− ϵ/16)‖µA ◦ µA‖q(µ)}.

Since
‖µA ◦ µA‖q(µ) ≥ ‖µA ◦ µA‖p′(µ) ≥ (1 + ϵ/4)/N

we know
S ⊆ S′ = {x : µA ◦ µA(x) ≥ (1 + ϵ/8)/N}.

By Theorem 5.1 (applied with ϵ replaced by ϵ/32) there is a subspace V of codimension

≤ 237L(α2q)2L(ϵα2q/32)2ϵ−2

such that
〈µV ∗ µA1

◦ µA2
, 1S′〉 ≥ 1− 1

16ϵ.

Using L(xy) ≤ x−1L(y) we have

L(ϵα2q/32) ≤ 32ϵ−1L(α2q),

and we also use L(xy) ≤ yL(x) to simplify the codimension bound to

≤ 251q4L(α)4ϵ−4.

We further note that (using logx ≤ x say)

q ≤ 210p′ϵ−2 log(64/ϵ) ≤ 230ϵ−5L(γ).

Therefore the desired codimension bound follows. Finally, by definition of S′, it follows that

(1 + ϵ/32)/N ≤ ((1 + ϵ/8)/N)(1− ϵ/16)

≤ 〈µV ∗ µA1
◦ µA2

, µA ◦ µA〉
≤ ‖µV ∗ µA‖∞‖µA ∗ µA2

◦ µA1
‖1

= ‖µV ∗ 1A‖∞ |A|−1
,

and the proof is complete.

Lemma 5.7. If A ⊆ G has no non-trivial three-term arithmetic progressions and G has odd
order then

〈µA ∗ µA, µ2·A〉 = 1/ |A|2 .

Proof. Expand out using definitions.

Theorem 5.8. Let q be an odd prime power. If A ⊆ Fn
q with α = |A| /qn has no non-trivial

three-term arithmetic progressions then

n � L(α)9.

Proof.
Let t ≥ 0 be maximal such that there is a sequence of subspaces Fn

q = V0 ≥ · · · ≥ Vt and
associated Ai ⊆ Vi with A0 = A such that
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1. for 0 ≤ i ≤ t there exists xi such that Ai ⊆ A− xi,

2. with αi = |Ai| / |Vi| we have
αi+1 ≥ 65

64
αi

for 0 ≤ i < t, and

3.
codim(Vi+1) ≤ codim(Vi) +O(L(α)8)

for 0 ≤ i < t. (here the second summand should be replaced with whatever explicit
codimension bound we get from the above).

Note this is well-defined since t = 0 meets the requirements, and this process is finite
and t � L(α), since αi ≤ 1 for all i. Therefore

codim(Vt) � L(α)9.

Suppose first that
|Vt|〈µAt ∗ µAt , µ2·At〉 < 1/2.

In this case we now apply Proposition 5.6 to At ⊆ Vt with ϵ = 1/2 (note that N = |Vt| and
all inner product, µ etc, are relative to the ambient group Vt now). Therefore there is a
subspace V ≤ Vt of codimension (relative to Vt) � L(α)8 such that there exists some x ∈ Vt

with
|(At − x) ∩ V |

|V |
= 1At ∗ µV (x) = ‖1At ∗ µV ‖∞ ≥ (1 + 1/64)αt,

which contradicts the maximality of t, letting Vt+1 = V and At+1 = (At − x) ∩ Vt.
Therefore

|Vt|〈µAt ∗ µAt , µ2·At〉 ≥ 1/2.

By Lemma 5.7 the left-hand side is equal to |Vt|/|At|2, and therefore

α2 ≤ α2
t ≤ 2/|Vt|.

By the codimension bound the right-hand side is at most

2qO(L(α)9)−n.

If α2 ≤ 2q−n/2 we are done, otherwise we deduce that L(α)9 � n as required.
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Chapter 6

Bohr sets

Definition 6.1 (Bohr sets). Let ν : Ĝ → R. The corresponding Bohr set is defined to be

Bohr(ν) = {x ∈ G : |1− γ(x)| ≤ ν(γ) for all γ ∈ Γ} .

The rank of ν, denoted by rk(ν), is defined to be the size of the set of those γ ∈ Ĝ such that
ν(γ) < 2.

(Basic API facts: Bohr sets are symmetric and contain 0. Also that, without loss of
generality, we can assume ν takes only values in R≥0 - I think it might be easier to have the
definition allow arbitrary real values, and then switch to non-negative only in proofs where
convenient. Or could have the definition only allow non-negative valued functions in the
first place.)

Lemma 6.2.
If ρ ∈ (0, 1) and ν : Ĝ → R then

|Bohr(ρ · ν)| ≥ (ρ/4)rk(ν) |Bohr(ν)| .

Proof. There are at most d4/ρe many zi such that if |1−w| ≤ ν(γ) then |zi −w| ≤ ρν(γ)/2
for some i. Let Γ = {γ : ν(γ) < 2} and define a function f : Bohr(ν) → d2/ρerk(ν) where for
γ ∈ Γ we assign the γ-coordinate of f(x) as whichever j has |zj − γ(x)| ≤ ρν(γ)/2.

By the pigeonhole principle there must exist some (j1, . . . , jd) such that f−1(j1, . . . , jd)
has size at least (d2/ρe)−rk(ν) |Bohr(ν)|. Call this set B′. It must be non-empty, so fix some
x ∈ B′. We claim that B′ − x ⊆ |Bohr(ρ · ν)|, which completes the proof.

Suppose that z = x+ y with x, y ∈ B′, and fix some γ ∈ Γ. By assumption there is some
zj ∈ C such that |zj − γ(x)| ≤ ρν(γ)/2 and |zj − γ(y)| ≤ ρν(γ)/2. Then by the triangle
inequality,

|1− γ(y − x)| = |γ(x)− γ(y)| ≤ ρν(γ)

and so z = y − x ∈ Bohr(ρ · ν).

Definition 6.3 (Regularity). We say ν : Ĝ → R is regular if, with d = rk(ν), for all κ ∈ R
with |κ| ≤ 1/100d we have

(1− 100d |κ|) ≤ |Bohr((1 + κ)ν)|
|Bohr(ν)| ≤ (1 + 100d |κ|)

Lemma 6.4. For any ν : Ĝ → R there exists ρ ∈ [ 12 , 1] such that ρ · ν is regular.
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Proof. To do.

Lemma 6.5. If B is a regular Bohr set of rank d and µ : G → R≥0 is supported on Bρ,
with ρ ∈ (0, 1), then

‖µB ∗ µ− µB‖1 � ρd‖µ‖1.

Proof. To do.

Lemma 6.6. There is a constant c > 0 such that the following holds. Let B be a regular
Bohr set of rank d and L ≥ 1 be any integer. If ν : G → R≥0 is supported on LBρ, where
ρ ≤ c/Ld, and ‖ν‖1 = 1, then

µB ≤ 2µB1+Lρ
∗ ν.

Proof. To do.

Lemma 6.7. There is a constant c > 0 such that the following holds. Let B be a regular
Bohr set of rank d, suppose A ⊆ B has density α, let ϵ > 0, and suppose B′, B′′ ⊆ Bρ where
ρ ≤ cαϵ/d. Then either

1. there is some translate A′ of A such that |A′ ∩B′| ≥ (1 − ϵ)α |B′| and |A′ ∩B′′| ≥
(1− ϵ)α |B′′|, or

2. ‖1A ∗ µB′‖∞ ≥ (1 + ϵ/2)α, or

3. ‖1A ∗ µB′′‖∞ ≥ (1 + ϵ/2)α.

Proof. To do.
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Chapter 7

The integer case

Theorem 7.1. There is a constant c > 0 such that the following holds. Let ϵ > 0 and
B,B′ ⊆ G be regular Bohr sets of rank d. Suppose that A1 ⊆ B with density α1 and A2 is
such that there exists x with A2 ⊆ B′ −x with density α2. Let S be any set with |S| ≤ 2 |B|.
There is a regular Bohr set B′′ ⊆ B′ of rank at most

d+Oϵ(Lα1
3Lα2)

and size
|B′′| ≥ exp(−Oϵ(dLα1α2/d+ Lα1

3Lα2Lα1α2/d)) |B′|

such that
|〈µB′ ∗ µA1

◦ µA2
, 1S〉 − 〈µA1

◦ µA2
, 1S〉| ≤ ϵ.

Proof. To do.

Proposition 7.2. There is a constant c > 0 such that the following holds. Let ϵ > 0 and
p ≥ 2 be an integer. Let B ⊆ G be a regular Bohr set and A ⊆ B with relative density α. Let
ν : G → R≥0 be supported on Bρ, where ρ ≤ cϵα/ rank(B), such that ‖ν‖1 = 1 and ν̂ ≥ 0. If

‖(µA − µB) ◦ (µA − µB)‖p(ν) ≥ ϵ µ(B)−1,

then there exists p′ �ϵ p such that

‖µA ◦ µA‖p′(ν) ≥
(
1 + 1

4ϵ
)
µ(B)−1.

Proof. To do.

Proposition 7.3. There is a constant c > 0 such that the following holds. Let p ≥ 2 be an
even integer. Let f : G → R, let B ⊆ G and B′, B′′ ⊆ Bc/ rank(B) all be regular Bohr sets.
Then

‖f ◦ f‖p(µB′◦µB′∗µB′′◦µB′′ ) ≥ 1
2‖f ∗ f‖p(µB).

Proof. To do,

Proposition 7.4. There is a constant c > 0 such that the following holds. Let ϵ > 0. Let
B ⊆ G be a regular Bohr set and A ⊆ B with relative density α, and let B′ ⊆ Bcϵα/ rank(B)

be a regular Bohr set and C ⊆ B′ with relative density γ. Either
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1.
∣∣〈µA ∗ µA, µC〉 − µ(B)−1

∣∣ ≤ ϵµ(B)−1 or

2. there is some p � Lγ such that ‖(µA − µB) ∗ (µA − µB)‖p(µB′ ) ≥ 1
2ϵµ(B)−1.

Proof. To do.

Proposition 7.5. There is a constant c > 0 such that the following holds. Let ϵ > 0 and
p, k ≥ 1 be integers such that (k, |G|) = 1. Let B,B′, B′′ ⊆ G be regular Bohr sets of rank d
such that B′′ ⊆ B′

c/d and A ⊆ B with relative density α. If

‖µA ◦ µA‖p(µk·B′◦µk·B′∗µk·B′′◦µk·B′′ ) ≥ (1 + ϵ)µ(B)−1,

then there is a regular Bohr set B′′′ ⊆ B′′ of rank at most

rank(B′′′) ≤ d+Oϵ(Lα4p4)

and size
|B′′′| ≥ exp(−Oϵ(dpLα/d+ Lα5p5)) |B′′|

such that
‖µB′′′ ∗ µA‖∞ ≥ (1 + cϵ)µ(B)−1.

Proof. To do.

Theorem 7.6. There is a constant c > 0 such that the following holds. Let ϵ, δ ∈ (0, 1) and
p, k ≥ 1 be integers such that (k, |G|) = 1. For any A ⊆ G with density α there is a regular
Bohr set B with

d = rank(B) = Oϵ

(
Lα5p4

)
and |B| ≥ exp

(
−Oϵ,δ(Lα6p5Lα/p)

)
|G|

and some A′ ⊆ (A− x) ∩B for some x ∈ G such that

1. |A′| ≥ (1− ϵ)α |B|,

2. |A′ ∩B′| ≥ (1− ϵ)α |B′|, where B′ = Bρ is a regular Bohr set with ρ ∈ ( 12 , 1) · cδα/d,
and

3.
‖µA′ ◦ µA′‖p(µk·B′′◦µk·B′′∗µk·B′′′◦µk·B′′′ ) < (1 + ϵ)µ(B)−1,

for any regular Bohr sets B′′ = B′
ρ′ and B′′′ = B′′

ρ′′ satisfying ρ′, ρ′′ ∈ ( 12 , 1) · cδα/d.

Proof. To do.

Theorem 7.7. There is a constant c > 0 such that the following holds. Let δ, ϵ ∈ (0, 1),
let p ≥ 1 and let k be a positive integer such that (k, |G|) = 1. There is a constant
C = C(ϵ, δ, k) > 0 such that the following holds.

For any finite abelian group G and any subset A ⊆ G with |A| = α |G| there exists a
regular Bohr set B with

rank(B) ≤ Cp4 log(2/α)5

and
|B| ≥ exp

(
−Cp5 log(2p/α) log(2/α)6

)
|G|

and A′ ⊆ (A− x) ∩B for some x ∈ G such that
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1. |A′| ≥ (1− ϵ)α |B|,

2. |A′ ∩B′| ≥ (1− ϵ)α |B′|, where B′ = Bρ is a regular Bohr set with ρ ∈ ( 12 , 1) · cδα/dk,
and

3.
‖(µA′ − µB) ∗ (µA′ − µB)‖p(µk·B′ ) ≤ ϵ

|G|
|B|

.

Proof. To do.

Theorem 7.8. If A ⊆ {1, . . . , N} has size |A| = αN , then A contains at least

exp(−O(Lα12))N2

many three-term arithmetic progressions.

Proof. To do.

Theorem 7.9 (Integer case). If A ⊆ {1, . . . , N} contains no non-trivial three-term arith-
metic progressions then

|A| ≤ N

exp(−c(logN)1/12)

Proof. To do.
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