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Chapter 1

Almost-Periodicity

Lemma 1.1 (Marcinkiewicz-Zygmund inequality). Let m > 1. If f : G — R is such that
E.f(z) =0 and |f(x)| <2 for all x then

2m

< (dmn)™.

n

> flai)

i=1

EI1,...,I"

Proof. Let S be the left-hand side. Since 0 = E, f(y) we have, by the triangle inequality,
and Holder’s inequality,

2m

(1.1)

=Fu,...a, |Ey (Z flxy) — f(%))

2m

2m

(1.2)

(1.3)

Changing the role of x; and y; makes no difference here, but multiplies the ¢ summand
by {—1,+1}, and therefore for any ¢; € {—1,+1},

2m

S S Eml ----- Yn

> elf (@) = flv)
In particular, if we sample €; € {—1,+1} uniformly at random, then

2m

S S EeBoy g, | alf (@) = fyi)

%

We now change the order of expectation and consider the expectation over just €;, viewing
the f(x;) — f(y;) = i, say, as fixed quantities. For any z; we can expand E, |}, €;2;|*™ and
then bound it from above, using the triangle inequality and |z;| < 4, by

m 2
ey ()

ki+--+kn=2m

k?l kn
Eei' - €.




The inner expectation vanishes unless each k; is even, when it is trivially one. Therefore the
above quantity is exactly

Z ( 2m ) o
it tlp=m 20y,...,20,) —

since for any Iy + -+ [, = m,

2m o m
m .
20,...,2l, ) — li,...,1l,

This can be seen, for example, by writing both sides out using factorials, yielding

(2m)! (2m)!  m! —— m!
(20)! - (21, — 2mml iy T Il 1,

O

Lemma 1.2 (Complex-valued Marcinkiewicz-Zygmund inequality). Letm > 1. If f : G —
C is such that B, f(x) =0 and |f(x)| < 2 for all x then

n 2m

Zf(xi)

i=1

Proof. Test. O

< (8mn)™.

Ew17~~~7wn

Lemma 1.3. Lete >0 andm > 1. Let ACG and f : G — C. If k > 64me=2 then the set

k

L={acA": |3 Y fl@—a;) = pa* flom < €l fllzm}-

i=1
has size at least |A|* /2.

Proof. Note that if a € A is chosen uniformly at random then, for any fixed x € G,

Ef(w—ai):TLZf(w—a)ZﬁlA*f(x):NA*f($)~

acA |

Therefore, if we choose aq,...,ar € A independently uniformly at random, for any fixed
x € G and 1 < i < k, the random variable f(z — a;) — f * pa(x) has mean zero. By the
Marcinkiewicz-Zygmund inequality Lemma [1.1], therefore,

2m

<

B2 Y S —a) — £ pala)

<16m/k>mk*1EZ [f( —a;) — f*pal@)®™.

We now sum both sides over all x € G. By the triangle inequality, for any fixed 1 <17 < k
and a; € A,

ST @ —a) = frpa@) P <2270 S [f@—a) P4 S0 1F  pala) P

zeG zeG zeG
< 22U (|Fligm + IS+ pallzy) -



We note that [|ually = ﬁ > weala(x) = |A|/|A| = 1, and hence by Young’s inequality,
Ilf = pallem < ||fll2m, and so

oI —ai) = f o pal@)™ < 22| flio.

zeG

It follows that

1 m m m
Bosyoaneally S0 7af = 5 palis < (64m/1)™ L35

In particular, if k > 64¢~>m then the right-hand side is at most (£|f|2m )™ as required. [
Lemma 1.4. Let ACGand f:G—C. Lete >0 and m>1 and k > 1. Let

k

L={ae A" |} fle—ai) = pax flom < ellfllzm}.

i=1
Ift € G is such that @€ L and @+ (t,...,t) € L then
7e(pea * f) = pa* fllam < 2€[| fll2m.
Proof. Test. O
Lemma 1.5. Let AC G and k> 1 and L C A*. Then there exists some @ € L such that

L]

teG:a+(t,....,t)e L} > ——
#{E a’+(7 7)6 }_|A+S|k

[5].

Proof. Test. O

Theorem 1.6 (L, almost periodicity). Let e € (0,1] and m > 1. Let K > 2 and A,S C G
with |A+ S| < K|A|. Let f : G — C. There exists T C G such that

|T| > 1(—512171672 |S|
such that for any t € T we have

I7e(pea * f) = pa* fllzm < €ll fll2m-
Proof. Test. O

Theorem 1.7 (L., almost periodicity). Let ¢ € (0,1]. Let K > 2 and A,S C G with
|[A+ S| < K|A|. Let B,C C G. Let n = min(1,|C|/|B|). There exists T C G such that

|T‘ > K74096H177'|e_2|5|
such that for any t € T we have

1 7e(pa * 1p * o) — ppa * 1 * pic oo <€



Proof. Let T be as given in @ with f = 1p and m = [£Ln] and € = €¢/e. (The size bound
on T follows since e < 8.) Fix t € T and let F = 7y(ua * 1) — pa * 15. We have, for any
z € G,

(Te(pa*1p % po) — pa s 1px pe)(@) = Fxpo(e) = > Fypo(@—y) =Y Fy)ue—c(y).

By Holder’s inequality, this is (in absolute value), for any m > 1,

[ l[2m Ml e —cllis

1 .
2m—

By the construction of T the first factor is at most <[|1g|2m = §|B|1/2m. We have by
calculation
H/J“IfC||1+ 1= |IE — C‘_1/2m — ‘C|—1/2m.

2m—1

Therefore we have shown that

| 7e(pa * 1 * pe) — ppa * 1 * pic oo < (|C\/|B|)—1/2m,

€
e
The claim now follows since, by choice of m,
(el <e
(dividing into cases as to whether n = 1 or not). O

Theorem 1.8. Lete € (0,1) and k> 1. Let K > 2 and A,S C G with |A+ S| < K|A|. Let
B,C C G. Let n=min(1,|C|/|B|). There exists T C G such that

2

|T| > K—4096mmk25* |S|

such that .
i 5 a5 1p % o — pa + 1p % picfloe < €
Proof. Let T be as in Theorem @ with € replaced by €/k. Note that, for any = € G,
u(k) #pa Lo x po(r) = _— Z Tttty ba * 1p % po(x).
' |T|k t1,.. k€T ' ’

It therefore suffices (by the triangle inequality) to show, for any fixed z € G and t1, ..., €
T, that with F = pua * 1 * uc, we have

ITt1+'“+th(x) - F(x” <e
This follows by the triangle inequality applied k times if we knew that, for 1 <[ < k,
Tyt F () = Tyt F(2)] < /R

We can write the left-hand side as

|Tt1+~~+tlF(x) _Tt1+‘-~+tl,1F('r)| = |TtlF(l'—t1 —e—t=1- 1) —F(l‘—tl —e—t=1— 1)|
The right-hand side is at most

7, F' = F|oo
and we are done by choice of T'. O



Chapter 2

Chang’s lemma

Definition 2.1 (Dissociation). We say that A C G is dissociated if, for any m > 1, and
any x € G, there is at most one A" C A of size |A’| = m such that

E a=2x.
acA’

Lemma 2.2 (Rudin’s exponential inequality). If the discrete Fourier transform of f : G —
C has dissociated support, then

et < e (125)

It follows that
Ee'f(””” < 90lIf113/2

Proof. Using the convexity of ¢ — e'* (for all z > 0 and ¢ € [—1,1]) we have
' < cosh(z) + tsinh(z).
It follows (taking = = |z| and ¢ = R(z)/|#|) that, for any z € C,

e®* < cosh|z| + R(z/|z|) sinh|z|.

~ ~

In particular, if ¢, € C with |cy| = 1 is such that f(v) = ¢y|f(7)], then

M —exp | RY Fov()

yel’

= [T exo (RF()1(@)

~yer

< TT (coshlf()] + ey () sinbl F) )

yel’

Therefore

E@ <RI (cosh|f(’y)\ + Ry () sinh| f (7)|) :

x ’YEF



Using Rz = (2 + z)/2 the product here can be expanded as the sum of

[T 5 I 5 (e | |1 st (X0 £ )@

v€eT's ~yel's yel'y ~yeT'2UI's ~yeTls Ael's

as I'y UT'e LU T3 = I' ranges over all partitions of I' into three disjoint parts. Using the
definition of dissociativity we see that

) IEED LY
~€eTs A€l

unless I'; = I's = (). In particular summing this term over all z € G gives 0. Therefore the
only term that survives averaging over x is when I'1 =T, and so

Eemf(m) < H cosh|f

yell

The conclusion now follows using cosh(z) < e’/2 and Z’y@l"f(’yM? = ||f|I3. The second
conclusion follows by applying it to f(z) and —f(z) and using

eVl < e¥ ey,
O

Lemma 2.3 (Rudin’s inequality). If the discrete Fourier transform of f : G — C has
dissociated support and p > 2 is an integer, then || f||, < 4,/pel| f|l2-

Proof. It is enough to show that | Rf]|, < 2,/pe||f||2 as then

1£llp < IRfllp + 1S Fllp = IRflp + R(=if)llp < 4v/pel fll2

If f =0, the result is obvious. So assume f # 0. [|f||2 > 0, so WLOG || f|l2 = 1/p-
Rudin’s exponential inequality for f becomes Eexp [Rf| < 2exp(§) = (24/e)P. Using
%’; < e* for positive x, we get

R |RfI7 R
RS IR _ g DY cuping

Rearranging, |Rf|, < 2pye = 2\/ﬁ‘|f||2- -

Definition 2.4 (Large spectrum). Let G be a finite abelian group and f : G — C. Let
n € R. The n-large spectrum is defined to be

Ay(f)={y € G:1f)] = nlflh}-
Definition 2.5 (Weighted energy). Let A C Gandm>1. Letv:G — C. Then

Epm(Aiv) = Y [P+ =)l

ViseesY2m EA

Definition 2.6 (Energy). Let G be a finite abelian group and A C G. Let m > 1. We
define

Eam(A) = Z Lo+ —azm=0-

a1,...,a2m €A



Lemma 2.7. Let G be a finite abelian group and f : G — C. Let v: G — Rx>( be such that
whenever |f| # 0 we have v > 1. Let A € A, (f). Then, for any m > 1.

n 5 AT < Eam(Asv).
1712
Proof. By definition of A,(f) we know that
nllfll 1AL < Y 1FO)1

YEA

There exists some ¢, € C with |¢,| = 1 for all v such that
D= e () = ey Y fla)y(@).
zeG

Interchanging the sums, therefore,

llfI A< Y f(2) Y ey(@).

zeG YEA
By Holder’s inequality the right-hand side is at most

1-1/m my 1/m
(ZIf(@I) SI@IY (@)
T T yEA
Taking mth powers, therefore, we have
n Al < 1@ Y e (@)
z YEA

By assumption we can bound |f(z)| < |f(z)|v(z)'/?

inequality the right-hand side is bounded above by

, and therefore by the Cauchy-Schwarz

om\ 1/2
I£llz | D wi@) | Y (@)
T YEA
Squaring and simplifying, we deduce that
2m
o o I .
" A 72 = Zu(a?) Z cyy(2)
2 T YEA

Expanding out the power, the right-hand side is equal to
ZV(JJ) Z Cy "'C"/zm,(ﬂ""}?m)(‘r)'
z Yiseees Y2m
Changing the order of summation this is equal to
Z Cyy =0 C’Yzm/y\('yl T 72m)-
Yis-eV2m

The result follows by the triangle inequality. O



Lemma 2.8. Let G be a finite abelian group and f : G — C. Let A C Ay (f). Then, for
any m > 1.

N71 2m||f||% |A|2m <E (A)
T = Femis)

Proof. Apply Lemma @ with v = 1, and use the fact that > A(x) is N if A =1 and 0
otherwise. O

Lemma 2.9. If AC G and m > 1 then
Bom(A) =310 ().

Proof. Expand out definitions. O
Lemma 2.10. If A C G is dissociated then Eoy,(A) < (32em |A])™.
Proof. By Lemma @ and Lemma @

< (4v2em)*™|[14]I3™
= (32em)™[[14[I3™

= (32em)™ |A"
O

Lemma 2.11.
If A C G contains no dissociated set with > K + 1 elements, then there is A’ C A of size

|A’| < K such that
AC {Z Coll: Cq € {—1,0,1}}.

acA’

Proof. Let A C A be a maximal dissociated subset (this exists and is non-empty, since
trivially any singleton is dissociated). We have |A’| < K by assumption.

Let S be the span on the right-hand side. It is obvious that A’ C S. Suppose that
z € A\A’. Then A’ U {z} is not dissociated by maximality. Therefore there exists some
y € G and two distinct sets B,C' C A’ U {z} such that

Shoy-Ye
beB ceC
If v ¢ B and = ¢ C then this contradicts the dissociativity of A’. If x € B and = € C then

we have
Z b=y—x= Z c,

beB\z ceC\z



again contradicting the dissociativity of A’. Without loss of generality, therefore, x € B and

x ¢ C. Therefore
m:Zc— Z b

ceC beB\z

which is in the span as required. O

Theorem 2.12 (Chang’s lemma). Let G be a finite abelian group and f : G — C. Letn > 0
and o = N7Y|f112/1 13- There exists some A C A, (f) such that

|A] < [eL(a)n~?]
and

A, (f) € Z cyy ey € {—1,0,1}

YEA

Proof. By Lemma it suffices to show that A, (f) contains no dissociated set with at
least
K = [eLla)n ] +1

many elements. Suppose not, and let A C A, (f) be a dissociated set of size K. Then by
Lemma m we have, for any m > 1,

On the other hand, by Lemma @,

’I’]QHLOéKQ"L S Egm(A>
Rearranging these bounds, we have
K™ < m!a—ln—%n < mma—ln—Qm-

Therefore K < a’l/mmn’Q. This is a contradiction to the choice of K if we choose m =
L(a), since a~1/™ <. O



Chapter 3

Unbalancing

Lemma 3.1. For any function f: G — R and integer k > 0
E.fo f(z)" > 0.
Proof. Test. O

Lemma 3.2. Let e € (0,1) and v : G — Rxq be some probability measure such that v > 0.
Let f : G — R. If [[f o fllpw) > € for some p > 1 then |[f o f+ 1wy > 1+ e for
p' = 120e " Llog(3/e).

Proof. Up to gaining a factor of 5 in p’, we can assume that p > 5 is an odd integer. Since
the Fourier transforms of f and v are non-negative,
Evf? =0 [P (0g5) > 0.

Tt follows that, since 2max(z,0) = z + |z| for z € R,
2(max(f,0), f£=1, =Evf? + (|f], 7 1), > 1150 = €

Therefore, if P = {x : f(z) > 0}, then (1p, f¥), > $¢*. Furthermore, if T = {z € P :
f(z) > %e} then (1p\7, f?), < iep, and hence by the Cauchy-Schwarz inequality,

V(T)l/QHf”gp(,,) > (17, fP), > %Ep-
On the other hand, by the triangle inequality
||fH2p(l/) <1+ Hf+ ]-H2p(u) <3,

or else we are done, with p’ = 2p. Hence v(T) > (¢/3)3P. It follows that, for any p’ > 1,
1f + Ul = A 1F + 107 > (14 2e)(e/3)%77.

The desired bound now follows if we choose p’ = 24e~*log(3/¢)p, using 1 — z < e~ 2. O

10



Chapter 4

Dependent random choice

Lemma 4.1. Let p > 2 be an even integer. Let B1,By C G and p = pup, o ip,. For any
finite set A C G and function f: G — Rxq there exist Ay C By and Ay C By such that

(1A, o pay, Hlltaolall? < 2((1aola)?, fu

p(1)
" 1| |l
. 1 2 T, -2 2
) > A TP [ lao 14177 .
min ({520 ) > 714 a1
Proof. First note that the statement is trivially true (with A; = By and Ay = Bs, say) if
[1a014], ,=0. We can therefore assume this is # 0.

p(n)
For s € GP let A1(s) =BiN(A+s1)N---N(A+s,), and similarly for As(s). Note that

(Lo 0 LY, fu = 3 i, 0 (@) (L4 0 1a(2))P f(2)

= Z 12:31 (bl)MBz (b2)1A o 1A(b1 - b2)pf(b1 - bz)

b1,b2
p
= ps, (01, (b2) (Z 1A+t(b1)1A+t(b2)> f(b1 —ba)
b1,b2 teG
= s, (001, (02) D Ly (s)(b1)1ay(s)(b2) £ (b1 — b2)
b1,b2 SEGP
= |B1[7 [Bal 7" Y (Lay(s) 0 Lag(s) )

seGP

In particular, applying this with f = 1 we see that

-1 -1
[Tao Lalls = [Bil ™" [Ba| 5D [Au(s)] [Aa(s)]

P
and
<(1A © 1A)pa f>lt _ Es<1A1(S) ° 1142(5)’ f> =7
Maolally, S G Ae)] "

say. Let M > 0 be some parameter, and let

1 if 0 < |A1(s)||A2(s)] < M? and
g9(s) = .
0 otherwise.

11



Then we have

Zg ) |Ar ()] [Aa(s |<ZM|A ()Y Aa(s)| 2.

To see why, note first that each summand on the left-hand side is < the corresponding
summand on the right-hand side, arguing by cases on whether g(s) = 1 or not. It therefore
suffices to show that there exists some s such that the summand on the left-hand side is <
the corresponding summand on the right-hand side.

If g(s) = 0 for all s then choose some s such that |A;(s)||Az2(s)| > M? (this must exist
or else |A1(s)||Az2(s)] = 0 for all s, but then ||14 o 1AH§(M) = 0 by the above calculation).

Otherwise, choose some s such that g(s) = 1, and note that for this s we have, by definition
of s,
[A1(s)] [ Aa(s)] < M [ Ax(s)]'77 [ Ax(s)[ .

‘We now choose

LA (1B 1Bo)2[11a 0 14l

so that, by the Cauchy-Schwarz inequality,

Zg ) [A1(s)] | A2(s)] < MY |Ar ()2 | Aa(s)] /2

1/2 1/2
M (Z > 1A1(s)($)> (Z > lay (@)

s zeG s zeG
= M |A]" (|B1]|Ba])"/?

mel )| 4s(s)]

and so

Y (1 =g(s)) [ Ai(s)] | A2(s)] > Z|A1 ) Az2(s)]

S

whence

D (Lays) 0 Layie) £) =) [Au(s)]|Az(s |<2nZ|A1 ) A2(s)] (1 = g(s)).

S

In particular there must exist some s such that

(Lay(s) © Lag(s), £) < 20 Ax(s)][A2(s)[ (1 = g(s))-

We claim this s meets the requirements. The first is satisfied since the right-hand side is
< 2n]A1(s)||A2(s)]. The second is satisfied since the left-hand side is trivially > 0 and
hence such an s must satisfy g(s) = 0, whence either |A(s)||Az2(s)| > M?2, that is,

|41 (s)] | A2(s)] = 7 IAI 7 |Bi||Bal L o 14l

or |A1(s)||A2(s)] = 0, which can’t happen because then the right-hand side is = 0.
The final bound now follows since zy < min(zx,y) when z,y < 1. O

12



Lemma 4.2. Lete,d > 0 and p > max(2,e¢ 11og(2/48)) be an even integer. Let By, By C G,
and let ;v = pup, © B, For any finite set A C G, if

S = {SC cG: lgq0 1A(I,C) > (1 —E)HlA o 1A||p(#)},
then there are A1 C By and As C By such that

(na, opayls) 21—-0

. [ A1] |As2] 1, -2 2
m S 2 ) > AT |[La o 14lI7P
ln(|Bl|’ Bzl ) — 4‘ e Lalg

Proof. Apply Lemma @ with f = 1g\g. This produces some A; C By and Ay C Bs such

and

that
(A, o pray, lens) < 2<(1A ° L) L5
o T RaeLall,
and

([ 1A4] |A2|> L2 5
min | =, = | > = |A| P |[1a014]P ..
(T3 13at) = 3147 Bl

It then suffices to note that

(A, o pray, 1s) =1 = (pa, © pay, lavs)

and by definition of S we have

((1a 0 14) Lonshu < (1= P [[Lao Lal ) ST @) = (1= [ 1a o La],.-

Now use the fact that p > e !log(2/6) together with the inequality 1 —x < e~* to deduce
that the right-hand side is < g||1A o lA”g(u)' -

Corollary 4.3. Let €,6 > 0 and p > max(2, e 'log(2/d)) be an even integer and p = 1/N.
If A C G has density a and

S={x:paopa(®) > (1—e)llpaopallpp}t

then there are Ay, Ao C G such that

(Ba, o pray;1s) 21 =46

and both A1 and As have density

> %P,

] =

Proof. We apply Lemma @ with By = By = G. It remains to note that

1140 1allpg > 114 0 Lalliw = [AI*/N.

13



Chapter 5

Finite field model

Theorem 5.1. If Ay, A3, S C Fy are such that Ay and Az both have density at least a then
there is a subspace V' of codimension

codim(V) < 227L(a)%L(ea)?e?
such that
(v pay * pag, 1s) — (pa, * pa,, 1s)| < e

Proof. (In this proof we write G = Fy.) Let k = [L(ea/4)]. Note that |A; + G| = |G| <
a~ Y A|. Furthermore, |As|/|S| > a. Therefore by Theorem there exists some T" C G
with
IT| > exp(—2'0L(a)?k*c2)|S|
such that
i 5 pra, * g © s — pra, * 14, © Ls oo < €/4.

Let A = Al/g(,uT) and

V={xeG:vy(x)=1forall y € A}.

Note that
1
(v * pa, * prag, Ls) = (pv, pa, * pa, © 1) = v D pa, % pa, 0 1s(v)
veV
and
(1A, * prag, 1s) = pa, * pa, o 15(0).
Therefore

1
(v * pay * pay, 1s) — (pay * pa,, 1s)| < ] > lia, % pra, 0 1s(v) = pa, * pra, o 1s(0)].
veV

In particular it suffices to show that, for any v € V,

la, * pa, 0 1s(v) — pa, * pra, 0 15(0) < e.

By the triangle inequality and construction of 7', it suffices to show that

14



/J/gfc) * A kLA, O 15‘(’0) _:u(jic) * Ay K [LA, O 15(0) < 6/2

By the Fourier transform we have, for any =z € G,

u % pay * piay 0 1s(@ Z 17 (V) B, (M, (N 1= s (7)7(2).
'yEG
Therefore the left-hand side of the desired inequality is, by the triangle inequality, at most
1 o k| — o —
5 2 O [ ()am () Ts()| ) - 11.
76@

By choice of v € V' the summand vanishes when v € A. When v ¢ A the summand is
bounded above by

21F | () (N s ().
Therefore the left-hand side of the desired inequality is at most

1
21k Z]uAl NN S0)| <27 18] 3w () 0)

using the trivial bound |T§| < |S|. By the Cauchy-Schwarz inequality the sum on the right

is at most
1/2 1/2
9 2
(z = ) (z i ) .
v v

By Parseval’s identity this is at most a~!. Therefore the desired inequality follows from
1 X
217k 9| Na_l <217Fa7l < ¢)2.

It remains to check the codimension of V. For this, let A’ C A be as provided by Chang’s
lemma, Lemma , so that

AC Z cyy ey € {-1,0,1}
yEA'

Let

W={xeG:vy(z)=1forall y € A'}.

It follows that W < V, so it suffices to bound the codimension of W. This we can bound
trivially using the bound from Chang’s lemma and the fact that £(§) = log(e?/d) < 2 +
log(1/6) < 4log(1/4), provided log(1/d) > 1, so

|A'] < [4eL(0)] < 27 log(1/9),

where
§=|T| /N > exp(—2'L(a)?k??),
0
codim(V) < |A'] €22 L(a)?k%e 2 < 2% L(a)?Lea/4)?e 2,
and now use L(ea/4) < 2L(ex), say. O

15



Lemma 5.2. For any function f: G — C and integer k > 1

1f* fll2e < 11f o fll2x-

Proof. To finish, similar trick to unbalancing. O
Lemma 5.3. For any function f with > f(z) =1

frf—=1/N=(f=1/N)*(f=1/N).
Proof. Expand everything out. O
Lemma 5.4. For any function f with > f(z) =1

fof—1/N=(f—1/N)o(f—1/N).
Proof. Expand everything out. O
Lemma 5.5. Let ¢ >0 and p =1/N. If A,C C G, where C has density at least v, and

IN{pa* pa, pe) — 1| > €
then, if f = (pa —1/N), ||f o fllpu) = €/2N for p=2[L(7)].
Proof. By Hélder’s inequality, for any p > 1
€ <|N(pa* pa—1/N,po)| < lpa* pa = 1/Nlpny /PN ZVP,

In particular if we choose p = 2[£(~)] then 4~1/P < e1/2 < 2 and so we deduce that, by
Lemma p.3,
If * fllp > eN'/P7

It remains to use Lemmas @ and @ and apply Lemma @, and note that we can pass
from the LP norm to the LP(u) norm losing a factor of N/7. O

Proposition 5.6. Let e € (0,1). If A,C CFy, where C has density at least vy, and
IN(pa * pra, pe) — 1| > €
then there is a subspace V' of codimension
< 2L L () L (7).
such that |14 * pv e = (1 + €/32)a.

Proof.
By Lemma @, if f=pa—1/N,

1f 0 Fllpguy = €/2N.
where p = 2[L(7)] < 4L(7). By Lemma @ there exists some p’ such that
P <128¢ og(96/€) L ()
such that

1f o f +1/ Ny = (1+¢/4)/N.
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ByLemma@fOf—i—l/N:MAouA.
Let ¢ = 2[p' +28¢ 2 1og(64/¢)]. By Corollary @, there are A;, Ay, both of density > 24
such that

<,UA1 ON‘A27]-S> Z 1- 6/32

where
S={z:paopa(x) > (1—e/16)llpa o pallgm}-
Since
lpaopallge = llpae pally = (1+€/4)/N
we know

SC S = {z:paopua(e) > (1+¢/3)/N}.
By Theorem @ (applied with e replaced by €/32) there is a subspace V' of codimension
< 237L(aP1)2L(ea?T/32)%e 2
such that
(uv * pra, © pag, 1sr) > 1 — e
Using L(xy) < 27 1L(y) we have
L(ea??/32) < 32¢71L(a?),
and we also use L(z¥) < yL(z) to simplify the codimension bound to
< 251(]4[,(05)4674.
We further note that (using logz < x say)
g < 2"’ ?log(64/¢) < 2%%7°L().
Therefore the desired codimension bound follows. Finally, by definition of S’, it follows that
(1+¢€/32)/N < ((14¢/8)/N)(1 — ¢/16)
< (Hv * pa, © pBag, a o fia)
< v * palloollpa * pay o pa, [l
= [l * Lalloo |AI ",
and the proof is complete. O

Lemma 5.7. If A C G has no non-trivial three-term arithmetic progressions and G has odd
order then

(A * pa, piz.a) =1/ \A|2-
Proof. Expand out using definitions. O

Theorem 5.8. Let q be an odd prime power. If A C T} with o = |A| /q" has no non-trivial
three-term arithmetic progressions then

n < L(a)?.

Proof.
Let t > 0 be maximal such that there is a sequence of subspaces IFZ =Vo>--->V,and
associated A; C V; with Ag = A such that
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1. for 0 <1 <t there exists x; such that A; C A — x;,

2. with a; = |A;| /|Vi| we have

Qg1 > @O@

for 0 <i<t, and

codim(Vi4+1) < codim(V;) + O(L()®)

for 0 < i < t. (here the second summand should be replaced with whatever explicit
codimension bound we get from the above).

Note this is well-defined since ¢ = 0 meets the requirements, and this process is finite
and t < L(«), since a; < 1 for all ¢. Therefore

codim(V;) < L(a)®.

Suppose first that
\Vil(pa, * pa,, po.a,) < 1/2.

In this case we now apply Proposition @ to Ay C Vi with e = 1/2 (note that N = |V;| and
all inner product, p etc, are relative to the ambient group V; now). Therefore there is a
subspace V' < V; of codimension (relative to V;) < £(«)® such that there exists some z € V;
with
(A —2)n V]
V|

which contradicts the maximality of ¢, letting V;11 =V and A1 = (A —2) N V4.
Therefore

= 1At *MV(‘Z‘) = HlAt */’[’V”OO > (1 + 1/64)0415,

“/t|<ll‘Af * MAt7l’L2'At> > 1/2
By Lemma @ the left-hand side is equal to |V;|/|A¢|?, and therefore

o < a? < 2/|Vi.
By the codimension bound the right-hand side is at most

940(£(@)")=n.

If a2 < 2¢~"/2? we are done, otherwise we deduce that L(a)? > n as required. O

18



Chapter 6

Bohr sets

Definition 6.1 (Bohr sets). Let v : G — R. The corresponding Bohr set is defined to be
Bohr(v) ={x € G: |1 —y(z)| < v(y) for ally €T}.

The rank of v, denoted by rk(v), is defined to be the size of the set of those v € G such that
v(y) < 2.

(Basic API facts: Bohr sets are symmetric and contain 0. Also that, without loss of
generality, we can assume v takes only values in R>q - I think it might be easier to have the
definition allow arbitrary real values, and then switch to non-negative only in proofs where
convenient. Or could have the definition only allow non-negative valued functions in the

first place.)

Lemma 6.2. R
If pe (0,1) and v : G — R then

[Bolr(p - v)| > (p/4)™**) [Bohu(v)|.

Proof. There are at most [4/p] many z; such that if |1 —w| < v(y) then |z; —w| < pr(y)/2
for some i. Let T' = {7 : v(y) < 2} and define a function f : Bohr(v) — [2/p]™ ") where for
v € I" we assign the v-coordinate of f(x) as whichever j has |z; — v(z)| < pv(7v)/2.

By the pigeonhole principle there must exist some (ji,...,5q) such that f=1(j1,...,jq)
has size at least ([2/p]) ") |Bohr(v)|. Call this set B’. It must be non-empty, so fix some
x € B’. We claim that B’ — x C |Bohr(p - v)|, which completes the proof.

Suppose that z = z+y with z,y € B’, and fix some v € I". By assumption there is some
z; € C such that |z; —v(z)| < pv(v)/2 and |z; —v(y)| < pr(7y)/2. Then by the triangle
inequality,

1=y —2)| = lv(x) =y < pr(7)

and so z =y — x € Bohr(p - v). O

Definition 6.3 (Regularity). We say v : G Ris reqular if, with d = rk(v), for all k € R
with |x| < 1/100d we have

|Bohr((1 + x)v)|

_ <
(1= 100 o]} < = p s

< (14 100d |&]|)
Lemma 6.4. For any v : G — R there exists pE [%, 1] such that p - v is regular.

19



Proof. To do. O

Lemma 6.5. If B is a regular Bohr set of rank d and p : G — Rxq is supported on B,,
with p € (0,1), then
e * 1 —pell < pdlpll-

Proof. To do. O

Lemma 6.6. There is a constant ¢ > 0 such that the following holds. Let B be a regular
Bohr set of rank d and L > 1 be any integer. If v : G — Rxq is supported on LB,, where
p <c/Ld, and ||v||1 = 1, then

U < 2/1“31+Lp * V.

Proof. To do. O

Lemma 6.7. There is a constant ¢ > 0 such that the following holds. Let B be a reqular
Bohr set of rank d, suppose A C B has density «, let € > 0, and suppose B', B" C B, where
p < cae/d. Then either

1. there is some translate A" of A such that |A’'NB’'| > (1 — ¢)a|B’| and |A'NB"| >
(1 —-¢€)a|B"|, or

2. 1a*pplleo = (1+€¢/2)a, or
3. HlA */—’LB”HOC Z (1 +€/2)O¢
Proof. To do. O
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Chapter 7

The integer case

Theorem 7.1. There is a constant ¢ > 0 such that the following holds. Let ¢ > 0 and
B, B’ C G be reqular Bohr sets of rank d. Suppose that Ay C B with density o1 and As is
such that there exists © with Ay C B’ —x with density as. Let S be any set with |S| < 2|B].
There is a reqular Bohr set B"” C B’ of rank at most

d -+ Oe(£a13£a2)
and size
|B"| > exp(—Oc(dLaray/d + Loy LagLayaz/d)) | B
such that
|<.U’B’ * A, O HA,, 1S> - <:U’z41 OlA,, 1S>| <e
Proof. To do. O

Proposition 7.2. There is a constant ¢ > 0 such that the following holds. Let € > 0 and
p > 2 be an integer. Let B C G be a regular Bohr set and A C B with relative density «. Let
v: G — Rxg be supported on B,, where p < ceae/ rank(B), such that ||v|y =1 and v > 0. If

H(:U‘A - /LB) © (/LA - :LLB)HP(V) > elu(B)ilv

then there exists p’ < p such that

a0 pally ) > (L+ Fe) p(B)~"
Proof. To do. O

Proposition 7.3. There is a constant ¢ > 0 such that the following holds. Let p > 2 be an
even integer. Let f: G — R, let B C G and B',B" C Be)ank(p) all be reqular Bohr sets.
Then

I o fllp(upronp sppmongn) = %”f * fllpus)-

Proof. To do, O

Proposition 7.4. There is a constant ¢ > 0 such that the following holds. Let € > 0. Let
B C G be a regular Bohr set and A C B with relative density o, and let B' C Beeo /rank(B)
be a reqular Bohr set and C C B’ with relative density . FEither
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1 [{pa* pa, pe) — p(B)H < ep(B) ™" or
2. there is some p < Ly such that ||(pa — pg) * (ta — p1B)|lp(uy) > sen(B) L.
Proof. To do. O

Proposition 7.5. There is a constant ¢ > 0 such that the following holds. Let ¢ > 0 and
p,k > 1 be integers such that (k,|G|) = 1. Let B, B’, B” C G be regular Bohr sets of rank d
such that B" C B;/d and A C B with relative density . If

la e 'U/A||p(/*"k~B’o/”'k-B’*p‘le”O:u'k.B”) > (1+¢) M(B)_l’

then there is a reqular Bohr set B" C B" of rank at most

rank(B"") < d+ O (La*p?)

and size
|B"'| > exp(—O(dpLa/d + La’p®)) |B"|
such that
pemmr * palloo > (14 ce)u(B) ™"
Proof. To do. O

Theorem 7.6. There is a constant ¢ > 0 such that the following holds. Let e,§ € (0,1) and
p,k > 1 be integers such that (k,|G|) = 1. For any A C G with density « there is a regular
Bohr set B with

d = rank(B) = O, (La’p") and |B| > exp (—Ocs(La’p’La/p)) |G|
and some A’ C (A —x) N B for some x € G such that
14> (1-alB,
2. |[A'NB'| > (1-e€)a|B'|, where B' = B, is a regular Bohr set with p € (1,1) - cda/d,

and

H/‘LA’ © /j’A/ ||p(#k.B//O/Lk,B//*/Lk,B/NO,uk,B///) < (]' + G)I‘L(B)_l’

or any reqular Bohr sets B" = B’, and B"' = B”, satisfying p',p" € (1,1) - cda/d.
P P PP 2
Proof. To do. O

Theorem 7.7. There is a constant ¢ > 0 such that the following holds. Let 6,¢ € (0,1),
let p > 1 and let k be a positive integer such that (k,|G|) = 1. There is a constant
C =C(e,0,k) > 0 such that the following holds.
For any finite abelian group G and any subset A C G with |A| = «|G)| there exists a
reqular Bohr set B with
rank(B) < Cp*log(2/a)®

and
|B| > exp (—Cp®log(2p/a)log(2/a)®) |G|

and A’ C (A —x)N B for some x € G such that
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1. |A| > (1-ea|B|,
2. |[A'NB'| > (1-e€)a|B'|, where B' = B, is a regular Bohr set with p € (1,1) - cdor/dk;,

and

G|
[(ar — pB) * (par — B ) lpeu,. 5 < 1B

Proof. To do. O
Theorem 7.8. If A C {1,...,N} has size |A| = aN, then A contains at least
exp(—O(La'?))N?

many three-term arithmetic progressions.

Proof. To do. O
Theorem 7.9 (Integer case). If A C {1,...,N} contains no non-trivial three-term arith-
metic progressions then
A —
~ exp(—c(log N)'/12)
Proof. To do. O
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