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The presentation is inspired by [1], but we do not aim to follow it very closely. For example,
the chapters below do not match those of [1].
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Chapter 1

Category theory

1.1 Over category
Proposition 1.1.1 (Sliced adjoint functors). If 𝑎 ∶ 𝐹 ⊢ 𝐺 is an adjunction between 𝐹 ∶ 𝐶 → 𝐷
and 𝐺 ∶ 𝐷 → 𝐶 and 𝑋 ∶ 𝐶, then there is an adjunction between 𝐹/𝑋 ∶ 𝐶/𝑋 → 𝐷/𝐹(𝑋) and
𝐺/𝑋 ∶ 𝐷/𝐹(𝑋) → 𝐶/𝑋.

Proof. See https://ncatlab.org/nlab/show/sliced+adjoint+functors+–+section.

Proposition 1.1.2 (Limit-preserving functors lift to over categories). Let 𝐽 be a shape (i.e. a
category). Let 𝐽 denote the category which is the same as 𝐽 , but has an extra object ∗ which
is terminal. If 𝐹 ∶ 𝐶 → 𝐷 is a functor preserving limits of shape 𝐽 , then the obvious functor
𝐶/𝑋 → 𝐷/𝐹(𝑋) preserves limits of shape 𝐽 .

Proof. Extend a functor 𝐾 ∶ 𝐽 → 𝐶/𝑋 to a functor 𝐾 ∶ 𝐽 → 𝐶, by letting 𝐾(∗) = 𝑋.

Proposition 1.1.3 (Essential image of a sliced functor). If 𝐹 ∶ 𝐶 → 𝐷 is a full functor between
cartesian-monoidal categories, then 𝐹/𝑋 ∶ 𝐶/𝑋 hom 𝐷/𝐹(𝑋) has the same essential image as
𝐹 .

Proof. Transfer all diagrams.

1.2 Objects
1.2.1 Group objects
Proposition 1.2.1 (Fully faithful product-preserving functors lift to monoid/group objects). If
a finite-products-preserving functor 𝐹 ∶ 𝐶 → 𝐷 is fully faithful, then so is Grp(𝐹) ∶ Grp 𝐶 →
Grp 𝐷.

Proof. Faithfulness is immediate.
For fullness, assume 𝑓 ∶ 𝐹(𝐺) → 𝐹(𝐻) is a morphism. By fullness of 𝐹 , find 𝑔 ∶ 𝐺 → 𝐻 such

that 𝐹(𝑔) = 𝑓 . 𝑔 is a morphism because we can pull back each diagram from 𝐷 to 𝐶 along 𝐹
which is faithful.

Proposition 1.2.2 (Equivalences lift to monoid/group object categories). If 𝑒 ∶ 𝐶 ⋍ 𝐷 is
an equivalence of cartesian-monoidal categories, then Grp(𝑒) ∶ Grp(𝐶) ⋍ Grp(𝐷) too is an
equivalence of categories.
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Proof. Transfer all diagrams.

Proposition 1.2.3 (Essential image of a functor on monoid/group objects). If 𝐹 ∶ 𝐶 → 𝐷 is a
fully faithful functor between cartesian-monoidal categories, then Grp(𝐹) ∶ Grp(𝐶) hom Grp(𝐷)
has the same essential image as 𝐹 .

Proof.
Transfer all diagrams.

Lemma 1.2.4 (A fully faithful functor product-preserving is a group isomorphism on hom sets).

If 𝐹 ∶ 𝐶 → 𝐷 is a fully faithful functor between cartesian-monoidal categories and 𝑋, 𝐺 ∈ 𝐶
are an object and a group object respectively, then Grp(𝐹) ∶ (𝑋 hom 𝐺) hom ≌ (𝐹(𝑋) hom 𝐹(𝐺))
is a group isomorphism.

Proof. Toddlers and streets.

1.2.2 Module objects
Proposition 1.2.5 (Pulling back a module object). Let 𝑀, 𝑁 be two monoid objects in a
monoidal category 𝐶. Let 𝑓 ∶ 𝑀 → 𝑁 be a monoid morphism. If 𝑋 is a 𝑁-module object, then
it is also a 𝑀-module object.

Proof. Define the multiplication 𝜇𝑀 ∶ 𝑀 ⊗ 𝑋 → 𝑋 as 𝑓 ⊗ 𝟙 ≫ 𝜇𝑁 . All proofs follow easily.
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Chapter 2

Algebra

2.1 Tensor Product
Lemma 2.1.1 (The tensor product of linearly independent families). Let 𝑅 be a domain and
𝑀, 𝑁 two 𝑅-semimodules. If 𝑓 and 𝑔 are linearly independent families of points in 𝑀 and 𝑁 ,
then (𝑖, 𝑗) ↦ 𝑓𝑖 ⊗ 𝑔𝑗 is a linearly independent family of points in 𝑀 ⊗ 𝑁 .

Proof. We will prove the equivalent statement:
Let 𝑃 , 𝑄 be two free 𝑅 modules, 𝑓 ∶ 𝑃 → 𝑀 and 𝑔 ∶ 𝑄 → 𝑁 be two 𝑅-linear injective maps.

Then 𝑓 ⊗ 𝑔 ∶ 𝑃 ⊗𝑅 𝑄 → 𝑀 ⊗𝑅 𝑁 is injective.
Let 𝐾 be the field of fractions of 𝑅.
The map

𝑃 ⊗𝑅 𝑄 → (𝐾 ⊗𝑅 𝑃) ⊗𝑅 (𝐾 ⊗𝑅 𝑄) = (𝐾 ⊗𝑅 𝑃) ⊗𝐾 (𝐾 ⊗𝑅 𝑄)

is injective because 𝑅 → 𝐾 is injective and all the modules involved are flat. The map

(𝐾 ⊗𝑅 𝑃) ⊗𝐾 (𝐾 ⊗𝑅 𝑄) → (𝐾 ⊗𝑅 𝑀) ⊗𝐾 (𝐾 ⊗𝑅 𝑁)

is injective because all the modules involved are 𝐾-flat (as 𝐾 is a field).
𝑃 ⊗𝑅 𝑄 → 𝑀 ⊗𝑅 𝑁 is now a factor of the composition of the two injections above, and is

thus is injective.

2.2 Affine Monoids
Lemma 2.2.1 (Multivariate Laurent polynomials are an integral domain). Multivariate Laurent
polynomials over an integral domain are an integral domain.

Proof. Come on.

Definition 2.2.2 (Affine monoid). An affine monoid is a finitely generated commutative monoid
which is:

• cancellative: if 𝑎 + 𝑐 = 𝑏 + 𝑐 then 𝑎 = 𝑏, and

• torsion-free: if 𝑛𝑎 = 𝑛𝑏 then 𝑎 = 𝑏 (for 𝑛 ≥ 1).
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Proposition 2.2.3 (Embedding an affine monoid inside a lattice).
If 𝑀 is an affine monoid, then 𝑀 can be embedded inside ℤ𝑛 for some 𝑛.

Proof. Embed 𝑀 inside its Grothendieck group 𝐺. Prove that 𝐺 is finitely generated free.

Proposition 2.2.4 (Affine monoid algebras are domains).
If 𝑅 is an integral domain 𝑀 is an affine monoid, then 𝑅[𝑀] is an integral domain and is a

finitely generated 𝑅-algebra.

Proof.
𝑖 ∶ 𝑅[𝑀] ↪ 𝑅[ℤ𝑀] injects into an integral domain so is an integral domain. It’s finitely

generated by 𝜒𝑎𝑖 where 𝒜 = {𝑎1, … , 𝑎𝑠} is a finite generating set for 𝑀 .

Definition 2.2.5 (Irreducible element). An element 𝑥 of a monoid 𝑀 is irreducible if 𝑥 = 𝑦 + 𝑧
implies 𝑦 = 0 or 𝑧 = 0.

Proposition 2.2.6 (Irreducible elements lie in all sets generating a salient monoid).
If 𝑀 is a monoid with a single unit, and 𝑆 is a set generating 𝑀 , then 𝑆 contains all

irreducible elements of 𝑀 .

Proof. Assume 𝑝 is an irreducible element. Since 𝑆 generates 𝑀 , write

𝑝 = ∑
𝑖

𝑎𝑖

where the 𝑎𝑖 are finitely many elements (not necessarily distinct) elements of 𝑆. Since 𝑝 is
irreducible, we must have

𝑝 = 𝑎𝑖 ∈ 𝑆
for some 𝑖.
Proposition 2.2.7 (A salient finitely generated monoid has finitely many irreducible elements).

If 𝑀 is a finitely generated monoid with a single unit, then only finitely many elements of 𝑀
are irreducible.

Proof.
Let 𝑆 be a finite set generating 𝑀 . Write 𝐼 the set of irreducible elements. By Proposition

2.2.6, 𝐼 ⊆ 𝑆. Hence 𝐼 is finite.

Proposition 2.2.8 (A salient finitely generated cancellative monoid is generated by its irre-
ducible elements).

If 𝑀 is a finitely generated cancellative monoid with a single unit, then 𝑀 is generated by its
irreducible elements.

Proof. We do not follow the proof from [1].
Let 𝑆 be a finite minimal generating set and assume for contradiction that 𝑟 ∈ 𝑆 is reducible,

say 𝑟 = 𝑎 + 𝑏 where 𝑎, 𝑏 are non-units. Write

𝑎 = ∑
𝑠∈𝑆

𝑚𝑠𝑠, 𝑏 = ∑
𝑠∈𝑆

𝑛𝑠𝑠

for some 𝑚𝑠, 𝑛𝑠 ∈ ℕ, so that
𝑟 = ∑

𝑠∈𝑆
(𝑚𝑠 + 𝑛𝑠)𝑠.

We distinguish three cases
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• 𝑚𝑟 + 𝑛𝑟 = 0. Then
𝑟 = ∑

𝑠∈𝑆∖{𝑟}
(𝑚𝑠 + 𝑛𝑠)𝑠 ∈ ⟨𝑆 ∖ {𝑟}⟩

contradicting the minimality of 𝑆.

• 𝑚𝑟 + 𝑛𝑟 = 1. Then

0 = ∑
𝑠∈𝑆∖{𝑟}

(𝑚𝑠 + 𝑛𝑠)𝑠 ⟹ ∀𝑠 ∈ 𝑆 ∖ {𝑟}, 𝑚𝑠𝑠 = 𝑛𝑠𝑠 = 0

Furthermore, either 𝑚𝑟 = 0 or 𝑛𝑟 = 0, so 𝑎 = 0 or 𝑏 = 0, contradicting the fact that 𝑎 and
𝑏 are non-units.

• 𝑚𝑟 + 𝑛𝑟 ≥ 2. Then
0 = 𝑟 + ∑

𝑠∈𝑆∖{𝑟}
(𝑚𝑠 + 𝑛𝑠)𝑠

and 𝑟 = 0, contradicting the minimality of 𝑆 once again.

2.3 Hopf algebras
2.3.1 Ideals and quotients
Definition 2.3.1 (Coideal). Let 𝑅 be a commutative ring and (𝐶, Δ, 𝜀) be a coalgebra over 𝑅.
An 𝑅-submodule 𝐼 of 𝐶 is a coideal of 𝐶 if Δ(𝐼) ⊆ ̄𝐼 ⊗𝑅 𝐶 + ̄𝐶 ⊗𝑅 𝐼 and 𝜀(𝐼) = 0, where ̄⋅
denotes the image in 𝐶 ⊗𝑅 𝐶.

Proposition 2.3.2 (Quotient coalgebra).
If 𝐶 is a coalgebra over 𝑅 and 𝐼 is a coideal, the quotient 𝐶/𝐼 is equipped with a canonical

𝑅-coalgebra structure.

Proof. Straightforward.

Proposition 2.3.3 (Quotient coalgebra map).
If 𝐶 is a coalgebra over 𝑅 and 𝐼 is a coideal, the quotient map 𝐶 → 𝐶/𝐼 is a coalgebra

homomorphism.

Proof. Straightforward.

Definition 2.3.4 (Bialgebra ideal).
Let 𝐵 be a bialgebra over a commutative ring 𝑅. A bialgebra ideal 𝐼 is an ideal which is also

a coideal.

Proposition 2.3.5 (Quotient bialgebra).
If 𝐵 is a bialgebra over 𝑅 and 𝐼 is a bialgebra ideal, the quotient 𝐵/𝐼 is equipped with a

canonical 𝑅-bialgebra structure.

Proof.
Straightforward.
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Proposition 2.3.6 (Quotient bialgebra map).
If 𝐵 is a bialgebra over 𝑅 and 𝐼 is a bialgebra ideal, the quotient map 𝐵 → 𝐵/𝐼 is a bialgebra

homomorphism.

Proof.
Straightforward.

Definition 2.3.7 (Hopf ideal).
Let 𝐴 be a Hopf algebra over a commutative ring 𝑅. A Hopf ideal 𝐼 is a bialgebra ideal such

that 𝑆(𝐼) = 𝐼 .

Proposition 2.3.8 (Quotient Hopf algebra).
If 𝐴 is a Hopf algebra over 𝑅 and 𝐼 is a Hopf ideal, the quotient 𝐴/𝐼 is equipped with a

canonical Hopf algebra structure over 𝑅.

Proof.
Straightforward.

Proposition 2.3.9 (Quotient Hopf algebra map).
If 𝐴 is a Hopf algebra over 𝑅 and 𝐼 is a Hopf ideal, the quotient map 𝐴 → 𝐴/𝐼 is a Hopf

algebra homomorphism.

Proof.
Follows immediately from Proposition 2.3.6.

2.3.2 Group algebras
Proposition 2.3.10 (Freeness of group algebras under an injective hom). Let 𝑅 be a commu-
tative ring. Let 𝐺, 𝐻 be abelian groups and 𝑓 ∶ 𝐺 → 𝐻 an injective group hom. Then 𝑅[𝐻] is a
free 𝑅[𝐺]-module.

Proof. Pick a section 𝜎 ∶ 𝐻/𝑓(𝐺) → 𝐻 and the unique map 𝜑 ∶ 𝐻 → 𝐺 such that ℎ =
𝜎(ℎ𝑓(𝐺))𝑓(𝜑(ℎ)). We claim that 𝑅[𝐻] is isomorphic to 𝑅[𝐺]⊕𝐻/𝑓(𝐺), from which the result
follows, as such:

𝑅[𝐺]⊕𝐻/𝑓(𝐺) ≃ 𝑅[𝐻]
𝜑(ℎ)𝑒ℎ𝑓(𝐺) ↦ ℎ𝑔𝑒𝑥 ↤ 𝜎(𝑥)𝑓(𝑔)

Those two functions are clearly inverse to each other, and the forward map is clearly 𝑅[𝐺]-
linear.

Proposition 2.3.11 (The kernel of a map on direct sums). Let 𝐺 be an abelian group generated by
a set 𝑆. Let 𝐴, 𝐵 be arbitrary indexing types and 𝑓 ∶ 𝐴 → 𝐵 a function. Write 𝑓⊕ ∶ 𝐺⊕𝐴 → 𝐺⊕𝐵

the pushforward. Then

ker 𝑓⊕ = span{𝑔𝑋𝑎
1 − 𝑔𝑋𝑎

2 |𝑔 ∈ 𝑆, 𝑎1, 𝑎2 ∈ 𝐴, 𝑓(𝑎1) = 𝑓(𝑎2)}.

Proof. Write 𝐼 = span{𝑔𝑋𝑎
1 − 𝑔𝑋𝑎

2 |𝑔 ∈ 𝐺, 𝑎1, 𝑎2 ∈ 𝐴, 𝑓(𝑎1) = 𝑓(𝑎2)} for brevity.
Note that we can assume WLOG that 𝑓 is surjective. Write 𝜎 ∶ 𝐵 → 𝐴 a section of 𝑓 .
Let’s prove by induction on 𝑥 ∈ 𝐺⊕𝐴 that 𝜎⊕(𝑓⊕(𝑥)) ≡ 𝑥 mod 𝐼 :

• 𝑥 = 0: 𝜎⊕(𝑓⊕(0)) = 0
• 𝑥 = 𝑔𝑋𝑎: 𝜎⊕(𝑓⊕(𝑔𝑋𝑎)) = 𝑔𝑋𝜎(𝑓(𝑎)) ≡ 𝑔𝑋𝑎 mod 𝐼 as 𝑆 generates
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• 𝑥 + 𝑦: Assume the induction hypothesis for 𝑥 and 𝑦. Then

𝜎⊕(𝑓⊕(𝑥 + 𝑦)) = 𝜎⊕(𝑓⊕(𝑥)) + 𝜎⊕(𝑓⊕(𝑦)) ≡ 𝑥 + 𝑦 mod 𝐼

Now, for any 𝑥 ∈ 𝐺⊕𝐴,

𝑥 ∈ ker 𝑓⊕ ⟺ 𝑓⊕(𝑥) = 0 ⟺ 𝜎⊕(𝑓⊕(𝑥)) ≡ 0 mod 𝐼 ⟺ 𝑥 ≡ 0 mod 𝐼

and we are done.

Proposition 2.3.12 (Localising a monoid algebra). Let 𝑅 be a commutative ring. Let 𝑀 be a
commutative monoid and 𝑀 ′ be its localization at some 𝑆 ⊆ 𝑀 . Then 𝑅[𝑀 ′] is the localization
of 𝑅[𝑀] at span{𝑋𝑠|𝑠 ∈ 𝑆}.

Proof. Straightforward.

2.3.3 Group-like elements
Definition 2.3.13 (Group-like elements). An element 𝑎 of a coalgebra 𝐴 is group-like if 𝜂(𝑎) = 1
and Δ(𝑎) = 𝑎 ⊗ 𝑎, where 𝜂 is the counit and Δ is the comultiplication map.

We write GrpLike 𝐴 for the set of group-like elements of 𝐴.

Proposition 2.3.14 (Group-like elements form a group).
Group-like elements GrpLike 𝐴 of a bialgebra 𝐴 form a monoid.
Group-like elements GrpLike 𝐴 of a Hopf algebra 𝐴 form a group.

Proof. Check that group-like elements are closed under unit, multiplication and inverses.

Lemma 2.3.15 (Bialgebra homs preserve group-like elements).
Let 𝑓 ∶ 𝐴 → 𝐵 be a bi-algebra hom. If 𝑎 ∈ 𝐴 is group-like, then 𝑓(𝑎) is group-like too.

Proof. 𝑎 is a unit, so 𝑓(𝑎) is a unit too. Then

𝑓(𝑎) ⊗ 𝑓(𝑎) = (𝑓 ⊗ 𝑓)(Δ𝐴(𝑎)) = Δ𝐵(𝑓(𝑎))

so 𝑓(𝑎) is group-like.

Lemma 2.3.16.
If 𝑅 is a commutative semiring, 𝐴 is a Hopf algebra over 𝑅 and 𝐺 is a group, then every

element of the image of 𝐺 in 𝐴[𝐺] is group-like.

Proof. This is an easy check.

Lemma 2.3.17.
If 𝑅 is a commutative semiring, 𝐴 is a Hopf algebra over 𝑅 and 𝐺 is a group, then the

group-like elements in 𝐴[𝐺] span 𝐴[𝐺] as an 𝐴-module.

Proof.
This follows immediately from 2.3.16.

Lemma 2.3.18 (Independence of group-like elements).
The group-like elements in a bialgebra 𝐴 over a domain are linearly independent.
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Proof.
Let’s prove that any finite set 𝑠 of group-like elements is linearly independent, by induction

on 𝑠.
∅ is clearly linearly independent.
Assume now that the finite set 𝑠 of group-like elements is linearly independent, that 𝑎 ∉ 𝑠 is

group-like, and let’s show that 𝑠 ∪ {𝑎} is linearly independent too.
Assume there is some 𝑐 ∶ 𝐴 → 𝑅 such that ∑𝑥∈𝑠 𝑐𝑥𝑥 = 𝑐𝑎𝑎. Since 𝑎 and all elements of 𝑠 are

group-like, we compute

∑
𝑥,𝑦∈𝑠

𝑐𝑥𝑐𝑦𝑥 ⊗ 𝑦 = 𝑐2
𝑎𝑎 ⊗ 𝑎

= 𝑐2
𝑎Δ(𝑎)

= 𝑐𝑎Δ (∑
𝑥∈𝑠

𝑐𝑥𝑥)

= ∑
𝑥∈𝑠

𝑐𝑎𝑐𝑥Δ(𝑥)

= ∑
𝑥∈𝑠

𝑐𝑎𝑐𝑥𝑥 ⊗ 𝑥

By Lemma 2.1.1, the 𝑥 ⊗ 𝑦 are linearly independent and therefore 𝑐2
𝑥 = 𝑐𝑎𝑐𝑥 and 𝑐𝑥𝑐𝑦 = 0 if

𝑥 ≠ 𝑦.
If 𝑐𝑥 = 0 for all 𝑥 ∈ 𝑠, then we are clearly done. Else find 𝑥 ∈ 𝑠 such that 𝑐𝑥 ≠ 0. From the

above two equations, we get that 𝑐𝑥 = 𝑐𝑎 and 𝑐𝑦 = 0 for all 𝑦 ∈ 𝑠, 𝑦 ≠ 𝑥. Therefore

𝑐𝑥𝑥 = ∑
𝑦∈𝑠

𝑐𝑦𝑦 = 𝑐𝑎𝑎 = 𝑐𝑥𝑎

and 𝑥 = 𝑎. Contradiction.

Lemma 2.3.19 (Group-like elements in a group algebra).
Let 𝑅 be a domain. The group-like elements of 𝑅[𝑀] are exactly the image of 𝑀 .

Proof.
See Lemma 12.4 in [2].

Proposition 2.3.20 (Galois connection between group algebra and group-like elements).
Let 𝑅 be a domain, 𝐺 a commutative group and 𝐴 a 𝑅-bialgebra. Then bialgebra homs

𝑅[𝐺] → 𝐴 are in bijection with group homs 𝐺 → GrpLike 𝐴.

Proof.
If 𝑓 ∶ 𝐺 → GrpLike 𝐴 is a group hom, then we get

𝑅[𝐺] → 𝐴𝑔 ↦ 𝑓(𝑔)

This is clearly an algebra hom, so for it to be a bialgebra hom we only need to check comultipli-
cation is preserved. We only need to check this on 𝑔 ∈ 𝐺, in which case

(𝑓 ⊗ 𝑓)(Δ(𝑔)) = (𝑓 ⊗ 𝑓)(𝑔 ⊗ 𝑔) = 𝑓(𝑔) ⊗ 𝑓(𝑔) = Δ(𝑓(𝑔))

since 𝑓(𝑔) ∈ GrpLike 𝐴.
If 𝑓 ∶ 𝑅[𝐺] → 𝐴 is a bialgebra hom, then it restricts to a group hom GrpLike 𝑅[𝐺] →

GrpLike 𝐴 by Proposition 2.3.15. Now use that GrpLike 𝑅[𝐺] ≅ 𝐺 from Proposition 2.3.19.

9



Proposition 2.3.21 (Quotients by binomial ideals).
Let 𝐴 be a Hopf algebra, 𝐻 be a subgroup of GrpLike 𝐴 and

𝐼 = ⟨ℎ1 − ℎ2 ∶ ℎ1, ℎ2 ∈ 𝐻⟩

be an ideal. Then 𝐼 is a Hopf ideal.

Proof. It suffices to check the conditions of a Hopf ideal on generators.
For the comultiplication condition:

Δ(ℎ1 − ℎ2) = Δ(ℎ1) − Δ(ℎ2)
= ℎ1 ⊗ ℎ1 − ℎ2 ⊗ ℎ2
= ℎ1 ⊗ ℎ1 − ℎ1 ⊗ ℎ2 + ℎ1 ⊗ ℎ2 − ℎ2 ⊗ ℎ2

= ℎ1 ⊗ (ℎ1 − ℎ2) + (ℎ1 − ℎ2) ⊗ ℎ2 ∈ ̄𝐴 ⊗ 𝐼 + ̄𝐼 ⊗ 𝐴.

For the counit condition:

𝜀(ℎ1 − ℎ2) = 𝜀(ℎ1) − 𝜀(ℎ2) = 1 − 1 = 0.

Finally, for the antipode condition:

𝑆(ℎ1 − ℎ2) = 𝑆(ℎ1) − 𝑆(ℎ2) = ℎ−1
1 − ℎ−1

2 ∈ 𝐼.

2.3.4 Diagonalizable bialgebras
Definition 2.3.22 (Diagonalizable bialgebras). A bialgebra is called diagonalizable if it is iso-
morphic to a group algebra.

Lemma 2.3.23.
A diagonalizable bialgebra is spanned by its group-like elements.

Proof.
This is true for a group algebra by 2.3.17, and the property of being spanned by its group-like

elements is preserves by isomorphisms of bialgebras.

Proposition 2.3.24.
Let 𝐴 be a bialgebra over a domain 𝑅, let 𝐺 be a subgroup of GrpLike(𝐴) (which is a monoid

by 2.3.14). If 𝐴 is generated by 𝐺, then the unique bialgebra morphism from 𝑅[𝐺] to 𝐴 sending
each element of 𝐺 to itself is bijective.

Proof.
This morphism is injective by the linear independence of group-like elements (2.3.18), and

surjective by assumption.

Proposition 2.3.25 (Quotient of a diagonalisable bialgebra is diagonalisable).
Let 𝑅 be a domain, 𝐺 a commutative group, 𝐴 a 𝑅-bialgebra and 𝑓 ∶ 𝑅[𝐺] → 𝐴 a surjective

bialgebra hom. Then 𝑅[𝑓(𝐺)] ≅ 𝐴 as bialgebras.
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Proof.

Note that 𝑅[𝐺]
𝑓
−→ 𝐴 factors as 𝑅[𝐺]

𝑓
−→ 𝑅[𝑓(𝐺)]

𝜙
−→ 𝐴, where 𝑓(𝐺) is a group by Proposition

2.3.14.
Since 𝑅[𝐺]

𝑓
−→ 𝐴 is surjective, so is 𝑅[𝑓(𝐺)]

𝜙
−→ 𝐴. Therefore Proposition 2.3.24 applies to

𝑓(𝐺) inside 𝐴, and we get 𝑅[𝑓(𝐺)] ≅ 𝐴.

Corollary 2.3.26.
A bialgebra over a domain is diagonalizable if and only if it is spanned by its group-like

elements.

Proof.
We know that a diagonalizable bialgebra is spanned by its group-like elements by 2.3.23, and

that a bialgebra over a domain that is spanned by its group-like elements is diagonalizable by
2.3.25 (and by the fact that a bijective morphism of bialgebras is an isomorphism).

Proposition 2.3.24 and Corollary 4.2.4 are false over a general commutative ring. Indeed,
let 𝑅 be a commutative ring and let 𝐺 be a group. Then the group-like elements of 𝑅[𝐺]
correspond to locally constant maps from 𝑆𝑝𝑒𝑐𝑅 to 𝐺 (with the discrete topology), hence they
are of the form 𝑒1𝑔1 + ⋯ + 𝑒𝑟𝑔𝑟, with the 𝑔𝑖 in 𝐺 and 𝑒1, … , 𝑒𝑟 a family of pairwise orthogonal
idempotent elements of 𝑅 that sum to 1. So 𝑅[𝐺] is not isomorphic to the group algebra over
its group-like elements unless 𝑆𝑝𝑒𝑐𝑅 is connected. As for the corollary, a bialgebra of the form
𝑅1[𝐺1]×⋯×𝑅𝑛[𝐺𝑛], seen as a bialgebra over 𝑅1 ×⋯×𝑅𝑛, is generated by its group-like elements
but not diagonalizable.

2.3.5 The group algebra functor
Proposition 2.3.27 (The antipode is a antihomomorphism). If 𝐴 is a 𝑅-Hopf algebra, then
the antipode map 𝑠 ∶ 𝐴 → 𝐴 is anti-commutative, ie 𝑠(𝑎 ∗ 𝑏) = 𝑠(𝑏) ∗ 𝑠(𝑎). If further 𝐴 is
commutative, then 𝑠(𝑎 ∗ 𝑏) = 𝑠(𝑎) ∗ 𝑠(𝑏).
Proof. Any standard reference will have a proof.

Proposition 2.3.28 (Bialgebras are comonoid objects in the category of algebras). The category
of 𝑅-bialgebras is equivalent to comonoid objects in the category of 𝑅-algebras.

Proof. Turn the arrows around.

Proposition 2.3.29 (Hopf algebras are cogroup objects in the category of algebras). The cate-
gory of 𝑅-Hopf algebras is equivalent to cogroup objects in the category of 𝑅-algebras.

Proof.
Turn the arrows around. Most of the diagrams have been turned around in Proposition 2.3.28

already.

Definition 2.3.30 (The group algebra functor). For a commutative ring 𝑅, we have a functor
𝐺 ⇝ 𝑅[𝐺] ∶ Grp → Hopf𝑅.

Proposition 2.3.31 (The group algebra functor is fully faithful).
Let 𝑅 be a domain. The functor 𝐺 ⇝ 𝑅[𝐺] from the category of groups to the category of

Hopf algebras over 𝑅 is fully faithful.
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Proof.
The functor is clearly faithful. Now for the full part, if 𝑓 ∶ 𝑅[𝐺] → 𝑅[𝐻] is a Hopf algebra

hom, then we get a series of maps

𝐺 ≃ group-like elements of 𝑅[𝐺] → group-like elements of 𝑅[𝐻] ≃ 𝐻

and each map separately is clearly multiplicative.
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Chapter 3

Convex geometry

3.1 Cones
3.1.1 Convex Polyhedral Cones
Fix a pair of dual real vector spaces 𝑀 and 𝑁 .

Definition 3.1.1 (Convex cone generated by a set). For a set 𝑆 ⊆ 𝑁 , the cone generated by
𝑆, aka cone hull of 𝑆, is

Cone(𝑆) ∶= {∑
𝑢∈𝑆

𝜆𝑢𝑢|𝜆𝑢 ≥ 0}

Definition 3.1.2 (Convex polyhedral cone).
A polyhedral cone is a set that can be written as Cone(𝑆) for some finite set 𝑆.

Definition 3.1.3 (Convex hull). For a set 𝑆 ⊆ 𝑁 , the convex hull of 𝑆 is

Conv(𝑆) ∶= {∑
𝑢∈𝑆

𝜆𝑢|𝜆𝑢 ≥ 0, ∑
𝑢

𝜆𝑢 = 1}

Definition 3.1.4 (Polytope).
A polytope is a set that can be written as Conv(𝑆) for some finite set 𝑆.

3.1.2 Dual Cones and Faces
Definition 3.1.5 (Dual cone).

Given a polyhedral cone 𝜎 ⊆ 𝑁 , its dual cone is defined by

𝜎∨ = {𝑚 ∈ 𝑀|∀𝑢 ∈ 𝜎, ⟨𝑚, 𝑢⟩ ≥ 0}

.

Proposition 3.1.6 (Dual of a polyhedral cone).
If 𝜎 is polyhedral, then its dual 𝜎∨ is polyhedral too.

Proof. Classic, use Fourier-Motzkin eliminiation.
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Proposition 3.1.7 (Dual cone of a sumset).
If 𝜎1, 𝜎2 are two cones, then

(𝜎1 + 𝜎2)∨ = 𝜎∨
1 ∩ 𝜎∨

2 .
Proof. Classic. See [3] maybe.

Proposition 3.1.8 (Double dual of a polyhedral cone).
If 𝜎 is polyhedral, then 𝜎∨∨ = 𝜎.

Proof. Classic. See [3] maybe.

Given 𝑚 ≠ 0 in 𝑀 , we get the hyperplane

𝐻𝑚 = {𝑢 ∈ 𝑁|⟨𝑚, 𝑢⟩ = 0} ⊆ 𝑁

and the closed half-space
𝐻+

𝑚 = {𝑢 ∈ 𝑁|⟨𝑚, 𝑢⟩ ≥ 0} ⊆ 𝑁.
Definition 3.1.9 (Face of a cone). If 𝜎 is a cone, then a subset of 𝜎 is a face iff it is the
intersection of 𝜎 with some halfspace. We write this 𝜏 ⪯ 𝜎. If furthermore 𝜏 ≠ 𝜎, we call 𝜏 a
proper face and write 𝜏 ≺ 𝜎.

Definition 3.1.10 (Edge of a cone).
A dimension 1 face of a cone is called an edge.

Definition 3.1.11 (Facet of a cone).
A codimension 1 face of a cone is called a facet.

Lemma 3.1.12 (Face of a polyhedral cone).
If 𝜎 is a polyhedral cone, then every face of 𝜎 is a polyhedral cone.

Lemma 3.1.13 (Intersection of faces).
If 𝜎 is a polyhedral cone, then the intersection of two faces of 𝜎 is a face of 𝜎.

Proof. Classic. See [3] maybe.

Lemma 3.1.14 (Face of a face).
A face of a face of a polyhedral cone 𝜎 is again a face of 𝜎.

Proof. Classic. See [3] maybe.

Lemma 3.1.15.
Let 𝜏 be a face of a polyhedral cone 𝜎. If 𝑣, 𝑤 ∈ 𝜎 and 𝑣 + 𝑤 ∈ 𝜏 , then 𝑣, 𝑤 ∈ 𝜏 .

Proof. Classic. See [3] maybe.

Proposition 3.1.16 (Dual cone of the intersection of halfspaces).
If 𝜎 = 𝐻+

𝑚1
∩ ⋯ ∩ 𝐻+

𝑚𝑠
, then

𝜎∨ = Cone(𝑚1, … , 𝑚𝑠).

Proof. Classic. See [3] maybe.

Proposition 3.1.17 (Facets of a full dimensional cone).
If 𝜎 is a full dimensional cone, then facets of 𝜎 are of the form 𝐻𝑚 ∩ 𝜎.
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Proof. Classic. See [3] maybe.

Proposition 3.1.18 (Intersection of facets containing a face).
Every proper face 𝜏 ≺ 𝜎 of a polyhedral cone 𝜎 is the intersection of the facets of 𝜎 containing

𝜏 .

Proof. Classic. See [3] maybe.

Definition 3.1.19 (Dual face).
Given a cone 𝜎 and a face 𝜏 ⪯ 𝜎, the dual face to 𝜏 is

𝜏∗ ∶= 𝜎∨ ∩ 𝜏⟂

Proposition 3.1.20 (The dual face is a face of the dual).
If 𝜏 ⪯ 𝜎, then 𝜏∗ ⪯ 𝜎∨.

Proof. Classic. See [3] maybe.

Proposition 3.1.21 (The double dual of a face).
If 𝜏 ⪯ 𝜎, then 𝜏∗∗ = 𝜏 .

Proof.
Classic. See [3] maybe.

Proposition 3.1.22 (The dual of a face is antitone).
If 𝜏 ′ ⪯ 𝜏 ⪯ 𝜎, then 𝜏 ′ ⪯ 𝜏 .

Proof. Classic. See [3] maybe.

Proposition 3.1.23 (The dimension of the dual of a face).
If 𝜏 ⪯ 𝜎, then

dim 𝜏 + dim 𝜏∗ = dim 𝑁.
Proof. Classic. See [3] maybe.

3.1.3 Relative Interiors
Definition 3.1.24 (Relative interior). The relative interior, aka intrinsic interior, of a cone
𝜎 is the interior of 𝜎 as a subset of its span.

Lemma 3.1.25 (The relative interior in terms of the inner product).
For a cone 𝜎,

𝑢 ∈ Relint(𝜎) ⟺ ∀𝑚 ∈ 𝜎∨ ∖ 𝜎⟂, ⟨𝑚, 𝑢⟩ > 0
Proof. Classic. See [3] maybe.

Lemma 3.1.26 (Relative interior of a dual face).
If 𝜏 ⪯ 𝜎 and 𝑚 ∈ 𝜎∨, then

𝑚 ∈ Relint(𝜏∗) ⟺ 𝜏 = 𝐻𝑚 ∩ 𝜎
Proof. Classic. See [3] maybe.

Lemma 3.1.27 (Minimal face of a cone).
If 𝜎 is a cone, then 𝑊 ∶= 𝜎 ∩ (−𝜎) is a subspace. Furthermore, 𝑊 = 𝐻𝑚 ∩ 𝜎 whenever

𝑚 ∈ Relint(𝜎∨).
Proof. Classic. See [3] maybe.
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3.1.4 Strong Convexity
Definition 3.1.28 (Salient cones). A cone 𝜎 is salient, aka pointed or strongly convex, if
𝜎 ∩ (−𝜎) = {0}.

Proposition 3.1.29 (Alternative definitions of salient cones).
The following are equivalent

1. 𝜎 is salient

2. {0} ⪯ 𝜎
3. 𝜎 contains no positive dimensional subspace

4. dim 𝜎∨ = dim 𝑁
Proof. Classic. See [3] maybe.

3.1.5 Separation
Lemma 3.1.30 (Separation lemma).

Let 𝜎1, 𝜎2 be polyhedral cones meeting along a common face 𝜏 . Then

𝜏 = 𝐻𝑚 ∩ 𝜎1 = 𝐻𝑚 ∩ 𝜎2

for any 𝑚 ∈ Relint(𝜎∨
1 ∩ (−𝜎2)∨).

Proof.
See [1].

3.1.6 Rational Polyhedral Cones
Let 𝑀 and 𝑁 be dual lattices with associated vector spaces 𝑀ℝ ∶= 𝑀 ⊗ℤ ℝ, 𝑁ℝ ∶= 𝑁 ⊗ℤ ℝ.

Definition 3.1.31 (Rational cone).
A cone 𝜎 ⊆ 𝑁ℝ is rational if 𝜎 = Cone(𝑆) for some finite set 𝑆 ⊆ 𝑁 .

Lemma 3.1.32 (Faces of a rational cone).
If 𝜏 ⪯ 𝜎 is a face of a rational cone, then 𝜏 itself is rational.

Proof. Classic. See [3] maybe.

Lemma 3.1.33 (The dual of a rational cone).
𝜎∨ is a rational cone iff 𝜎 is.

Proof. Classic. See [3] maybe.

Definition 3.1.34 (Ray generator).
If 𝜌 is an edge of a rational cone 𝜎, then the monoid 𝜌 ∩ 𝑁 is generated by a unique element

𝑢𝜌 ∈ 𝜌 ∩ 𝑁 , which we call the ray generator of 𝜌.

Definition 3.1.35 (Minimal generators).
The minimal generators of a rational cone 𝜎 are the ray generators of its edges.

Lemma 3.1.36 (A rational cone is generated by its minimal generators).
A salient convex rational polyhedral cone is generated by its minimal generators.
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Proof. Classic. See [3] maybe.

Definition 3.1.37 (Regular cone).
A salient rational polyhedral cone 𝜎 is regular, aka smooth, if its minimal generators form

part of a ℤ-basis of 𝑁 .

Definition 3.1.38 (Simplicial cone).
A salient rational polyhedral cone 𝜎 is simplicial if its minimal generators are ℝ-linearly

independent.

3.1.7 Semigroup Algebras and Affine Toric Varieties
Definition 3.1.39 (Dual lattice of a cone).

If 𝜎 ⊆ 𝑁ℝ is a polyhedral cone, then the lattice points

𝑆𝜎 ∶= 𝜎∨ ∩ 𝑀

form a monoid.

Proposition 3.1.40 (Gordan’s lemma).
𝑆𝜎 is finitely generated as a monoid.

Proof.
See [1].

Definition 3.1.41 (Affine toric variety of a rational polyhedral cone).
𝑈𝜎 ∶= Spec ℂ[𝑆𝜎] is an affine toric variety.

Theorem 3.1.42 (Dimension of the affine toric variety of a rational polyhedral cone).

dim 𝑈𝜎 = dim 𝑁 ⟺ the torus of 𝑈𝜎 is 𝑇𝑁 = 𝑁 ⊗[ ℤ]ℂ∗ ⟺ 𝜎 is salient.
Proof.

See [1].

Proposition 3.1.43 (The irreducible elements of the dual lattice of a cone).
If 𝜎 ⊆ 𝑁ℝ is salient of maximal dimension, then the irreducible elements of 𝑆𝜎 are precisely

the minimal generators of 𝜎∨.

Proof.
See [1].
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Chapter 4

Scheme theory

4.1 Correspondence between affine group schemes and Hopf
algebras

We want to show that affine group schemes correspond to Hopf algebras. We must decide what
this means mathematically.

We choose to interpret this as lifting Spec to a fully faithful functor from Hopf algebras to
group schemes, with essential image affine group schemes.

An alternative would have been to lift the Gamma-Spec adjunction to an adjunction between
Hopf algebras and affine group schemes. This is unfortunately much harder to do over an
arbitrary scheme, so we leave this as future work.

4.1.1 Spec of an algebra
Definition 4.1.1 (Spec as a functor on algebras). Spec is a contravariant functor from the
category of 𝑅-algebras to the category of schemes over Spec𝑅.

Proposition 4.1.2 (Spec as a functor on algebras is fully faithful).
Spec is a fully faithful contravariant functor from the category of 𝑅-algebras to the category

of schemes over Spec𝑅, preserving all limits.

Proof.
Spec ∶ Ring → Sch is a fully faithful contravariant functor which preserves all limits, hence

so is Spec ∶ Ring𝑅 → SchSpec 𝑅 by Proposition 1.1.2 (alternatively, by Proposition 1.1.1).

4.1.2 Spec of a bialgebra
Definition 4.1.3 (Spec as a functor on bialgebras).

Spec is a contravariant functor from the category of 𝑅-bialgebras to the category of monoid
schemes over Spec𝑅.

Proposition 4.1.4 (Spec as a functor on bialgebras is fully faithful).
Spec is a fully faithful contravariant functor from the category of 𝑅-bialgebras to the category

of monoid schemes over Spec𝑅.
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Proof.
Spec ∶ Ring𝑅 → SchSpec 𝑅 is a fully faithful contravariant functor preserving all limits accord-

ing to Proposition 4.1.1, therefore Spec ∶ Bialg𝑅 → GrpSchSpec 𝑅 too is fully faithful according
to 1.2.1.

Proposition 4.1.5 (Spec sends cocommutative bialgebras to commutative monoid schemes).
If 𝐴 is a cocommutative bialgebra over 𝑅, then Spec 𝐴 is a commutative monoid scheme.

Proof. Diagrams are the same up to identifying Spec(𝐴 ⊗ 𝐴) with Spec 𝐴 ⊗ Spec 𝐴.

4.1.3 Spec of a Hopf algebra
Definition 4.1.6 (Spec as a functor on Hopf algebras).

Spec is a contravariant functor from the category of 𝑅-Hopf algebras to the category of group
schemes over Spec𝑅.

Proposition 4.1.7 (Spec as a functor on Hopf algebras is fully faithful).
Spec is a fully faithful contravariant functor from the category of 𝑅-Hopf algebras to the

category of group schemes over Spec𝑅.

Proof.
Spec ∶ Ring𝑅 → SchSpec 𝑅 is a fully faithful contravariant functor preserving all limits accord-

ing to Proposition 4.1.1, therefore Spec ∶ Hopf𝑅 → GrpSchSpec 𝑅 too is fully faithful according
to 1.2.1.

4.1.4 Essential image of Spec on Hopf algebras
Proposition 4.1.8 (Essential image of Spec on algebras).

The essential image of Spec ∶ Ring𝑅 → SchSpec 𝑅 is precisely affine schemes over Spec 𝑅.

Proof.
Direct consequence of Proposition 1.1.3.

Proposition 4.1.9 (Essential image of Spec on bialgebras).
The essential image of Spec ∶ Bialg𝑅 → GrpSchSpec 𝑅 is precisely affine monoid schemes over

Spec 𝑅.

Proof.
Direct consequence of Propositions 1.2.3 and 4.1.8.

Proposition 4.1.10 (Essential image of Spec on Hopf algebras).
The essential image of Spec ∶ Hopf𝑅 → GrpSchSpec 𝑅 is precisely affine group schemes over

Spec 𝑅.

Proof.
Direct consequence of Propositions 1.2.3 and 4.1.8.
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4.2 Diagonalisable groups
Definition 4.2.1 (The diagonalisable group scheme functor).

Let 𝐺 be a commutative group and 𝑆 a base scheme. The diagonalisable group scheme
𝐷𝑆(𝐺) is defined as the base-change of Spec ℤ[𝐺] to 𝑆. For a commutative ring 𝑅, we write
𝐷𝑅(𝐺) ∶= 𝐷Spec 𝑅(𝐺).
Definition 4.2.2 (Diagonalisable group schemes).

An algebraic group 𝐺 over Spec 𝑅 is diagonalisable if it is isomorphic to 𝐷𝑅(𝐺) for some
commutative group 𝐺.

Lemma 4.2.3 (The diagonalisable group scheme torus over Spec 𝑅).
Let 𝑅 be a commutative ring and 𝑀 an abelian monoid. Then 𝐷𝑅(𝑀) is isomorphic to

Spec 𝑅[𝑀].
Proof. Ask any toddler on the street.

Theorem 4.2.4.
An algebraic group 𝐺 over a field 𝑘 is diagonalizable if and only if Γ(𝐺) is spanned by its

group-like elements.

Proof.
See Theorem 12.8 in [2].

Theorem 4.2.5.
Let 𝑅 be a domain. The functor 𝐷𝑅(𝐺) ∶= 𝐺 ⇝ Spec 𝑅[𝐺] from the category of groups to

the category of group schemes over Spec 𝑅 is fully faithful.

Proof.
Compose Propositions 4.1.7 and 2.3.31.
Also see Theorem 12.9(a) in [2]. See SGA III Exposé VIII for a proof that works for 𝑅 an

arbitrary commutative ring.

Proposition 4.2.6 (Morphisms between diagonalisable group schemes are affine).
Let 𝑆 be a scheme. Let 𝑀, 𝑁 be commutative monoids and 𝑓 ∶ 𝑀 → 𝑁 a monoid hom. Then

the map 𝐷𝑆(𝑓) ∶ 𝐷𝑆(𝑁) → 𝐷𝑆(𝑀) is affine.

Proof. Spec 𝑓 ∶ Spec ℤ[𝑁] → Spec ℤ[𝑀] is affine, since it’s a morphism of affine schemes. There-
fore 𝐷𝑆(𝑓) is affine, as affine morphisms are preserved under base change.

Proposition 4.2.7 (Closed embeddings between diagonalisable group schemes).
Let 𝑆 be a scheme. Let 𝑀, 𝑁 be commutative monoids and 𝑓 ∶ 𝑀 → 𝑁 a surjective monoid

hom. Then the map 𝐷𝑆(𝑓) ∶ 𝐷𝑆(𝑁) → 𝐷𝑆(𝑀) is a closed embedding.

Proof. Since 𝑓 is surjective, the corresponding map ̂𝑓 ∶ ℤ[𝑀] → ℤ[𝑁] is surjective too. Hence
Spec ̂𝑓 ∶ Spec ℤ[𝑁] → Spec ℤ[𝑀] is a closed embedding. Therefore 𝐷𝑆(𝑓) is a closed embedding,
as closed embeddings are preserved under base change.

Proposition 4.2.8 (Faithfully flat morphisms between diagonalisable group schemes).
Let 𝑆 be a scheme. Let 𝐺, 𝐻 be abelian groups and 𝑓 ∶ 𝐺 → 𝐻 an injective group hom. Then

the map 𝐷𝑆(𝑓) ∶ 𝐷𝑆(𝐻) → 𝐷𝑆(𝐺) is faithfully flat.
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Proof.
Since 𝑓 is injective, ℤ[𝐻] is a free module over ℤ[𝐺] by Proposition 2.3.10, hence the map

ℤ[𝐺] → ℤ[𝐻] is faithfully flat and so is Spec ℤ[𝐻] → Spec ℤ[𝐺]. Therefore 𝐷𝑆(𝑓) is faithfully
flat, as faithfully flat morphisms are preserved under base change.

Proposition 4.2.9 (A subgroup of a diagonalisable group scheme is a diagonalisable group
scheme).

Let 𝑅 be a domain. Let 𝐺 be an abelian group. If 𝐻 is a closed subgroup of 𝐷𝑅(𝐺), then 𝐻
is a diagonalisable group scheme.

Proof.
𝐻 is a closed subscheme of an affine scheme, hence it is affine. By Proposition 4.1.10, write

𝐻 = Spec 𝐴 where 𝐴 is a 𝑅-Hopf algebra. The closed subgroup embedding 𝐻 ↪ 𝐷𝑅(𝐺) becomes
a surjective bialgebra hom 𝑅[𝐺] → 𝐴 by Propositions 4.2.3 and 4.1.7. By Proposition 2.3.25, 𝐴
is a diagonalisable bialgebra and therefore 𝐻 is a diagonalisable group scheme.

Proposition 4.2.10 (Diagonalisable group scheme of a torsion group is disconnected).
Let 𝐺 be an abelian group with an element of torsion 𝑛. Let 𝑅 be a commutative ring with 𝑛

invertible. Then 𝐷𝑅(𝐺) is disconnected.

Proof.
Say 𝑥 ∈ 𝐺 is such that 𝑥𝑛 = 1. Then

𝑒 ∶ 𝑅[𝐺] ∶= 1
𝑛

𝑛
∑
𝑖=0

𝑥𝑖

is such that 𝑒2 = 𝑒. We are done by Proposition 4.2.3.

4.3 The torus
Definition 4.3.1 (The split torus). The split torus 𝔾𝑛

𝑚 over a scheme 𝑆 is the pullback of
Spec ℤ[𝑥±1

1 , … , 𝑥±1
𝑛 ] along the unique map 𝑆 → Spec ℤ.

Lemma 4.3.2 (Diag is a group isomorphism on hom sets).
Let 𝑅 be a domain. The functor 𝐺 ⇝ Spec 𝑅[𝐺] from the category of groups to the category

of group schemes over Spec 𝑅 is a group isomorphism on hom sets.

Proof.
Toddlers and streets by Lemmas 4.2.5 and 1.2.4.

Definition 4.3.3 (Characters of a group scheme).
For a group scheme 𝐺 over 𝑆, the character lattice of 𝐺 is

𝑋(𝐺) ∶= HomGrpSch𝑆
(𝐺, 𝔾𝑚).

An element of 𝑋(𝐺) is called a character.

Definition 4.3.4 (Cocharacters of a group scheme).
For a group scheme 𝐺 over 𝑆, the cocharacter lattice of 𝐺 is

𝑋∗(𝐺) ∶= HomGrpSch𝑆
(𝔾𝑚, 𝐺).

An element of 𝑋∗(𝐺) is called a cocharacter or one-parameter subgroup.
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Proposition 4.3.5 (Character lattice of a diagonalisable group scheme).
Let 𝑅 be a domain and 𝐺 be a commutative group. Then 𝑋(Spec 𝑅[𝐺]) = 𝐺.

Proof.
By Propositions 4.2.3 and 4.2.5 in turn, we have

𝑋(𝐺) = HomGrpSch(𝐺, 𝔾𝑚) = Hom(𝑘[ℤ], 𝑘[𝐺]) = Hom(ℤ, 𝐺) = 𝐺.

Proposition 4.3.6 (Cocharacter lattice of a diagonalisable group scheme).
Let 𝑅 be a domain and 𝐺 be a commutative group. Then 𝑋∗(Spec 𝑅[𝐺]) = Hom(𝐺, ℤ).

Proof.
By Propositions 4.2.3 and 4.2.5 in turn, we have

𝑋∗(𝐺) = HomGrpSch(𝔾𝑚, 𝐺) = Hom(𝑘[𝐺], 𝑘[ℤ]) = Hom(𝐺, ℤ).

Proposition 4.3.7 (Character lattice of the torus).
Let 𝐺 be a torus of dimension 𝑛 over a domain 𝑅. Then 𝑋(𝐺) = ℤ𝑛.

Proof.
Immediate from Propositions 4.2.3 and 4.3.5.

Proposition 4.3.8 (Cocharacter lattice of the torus).
Let 𝐺 be a torus of dimension 𝑛 over a domain 𝑅. Then 𝑋∗(𝐺) = Hom(ℤ𝑛, ℤ).

Proof.
Immediate from Propositions 4.2.3 and 4.3.6.

Definition 4.3.9 (The character-cocharacter pairing).
Let 𝑅 be a domain and 𝐺 a group scheme over Spec 𝑅. Then there is a ℤ-valued perfect

pairing between 𝑋(𝐺) and 𝑋∗(𝐺).
Proposition 4.3.10 (The character-cocharacter pairing is perfect).

The character-cocharacter pairing on a torus is perfect.

Proof. Transfer everything across the isos 𝑋(𝔾𝑛
𝑚) = ℤ𝑛, 𝑋 ∗ (𝔾𝑛

𝑚) = Hom(ℤ𝑛, ℤ).
Proposition 4.3.11 (The image of a torus is a torus).

Let 𝑅 be a domain. Let 𝑇 be a split torus over 𝑅. Let 𝐺 be a diagonalisable group scheme
over 𝑅 and let 𝜙 ∶ 𝑇 → 𝐺 be a homomorphism. Then the (scheme theoretic) image of 𝜙 is a
split torus over 𝑅 and the maps

𝑇
̂𝜙

−→ im 𝜙 𝜄−→ 𝐺
are group homomorphisms, and ̂𝜙 is fpqc. Furthermore, if 𝑇 = 𝐷𝑅(𝐻), 𝐺 = 𝐷𝑅(𝐼), 𝜙 = 𝐷𝑅(𝑓)
for 𝐻 a finitely generated free abelian group, 𝐼 an abelian group, 𝑓 ∶ 𝐼 → 𝐻 a group hom, then
im 𝜙 ≅ 𝐷𝑅(im(𝑓)).
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Proof.
By fullness of 𝐷𝑅 (Proposition 4.2.5), it’s enough to handle the case where 𝑇 = 𝐷𝑅(𝐻), 𝐺 =

𝐷𝑅(𝐼), 𝜙 = 𝐷𝑅(𝑓) for 𝐻 a finitely generated free abelian group, 𝐼 an abelian group, 𝑓 ∶ 𝐼 → 𝐻
a group hom.

Then im(𝑓) is a subgroup of the finitely-generated free abelian group 𝐻, hence itself a finitely-
generated free abelian group (since free is equivalent to torsion-free for finitely-generated abelian
groups, and a subgroup of a torsion-free group is torsion-free).

Proposition 4.3.12 (A subgroup of a torus is a torus).
Let 𝑅 be a commutative ring of characteristic zero. Let 𝑇 be a split torus. If 𝐻 ⊆ 𝑇 is a

connected closed subgroup, then 𝐻 is a split torus.

Proof.
By assumption, write 𝑇 ≅ 𝐷𝑘[𝐺] for 𝐺 a free abelian group. By Proposition 4.2.9, 𝐻 is

a diagonalisable group scheme, say 𝐻 ≅ 𝐷𝑘(𝐼) for 𝐼 an abelian group. Since 𝐻 is a closed
subscheme, the map 𝐺 → 𝐼 is surjective, so 𝐼 is a finitely-generated abelian group. Since 𝐻 is
connected, Proposition 4.2.10 says 𝐼 is torsion-free, hence free. Thus 𝐻 is a split torus.

23



Chapter 5

Toric varieties

5.1 Toric varieties
In this section, we define toric varieties and toric morphisms.

Definition 5.1.1 (Toric varieties).
Let 𝑘 be a field. Let 𝑇 be a torus over 𝑘. A toric variety structure on a scheme 𝑋 over 𝑘

consists the following data:

• a torus 𝑇 over 𝑘,

• a group action 𝑇 × 𝑋 → 𝑋 over 𝑘.

• a dominant open immersion 𝑖 ∶ 𝑇 ↪ 𝑋 over 𝑘 that is 𝑇 -equivariant.

Definition 5.1.2 (Torus morphisms, torus isomorphisms).
Let 𝑘 be a field. Let 𝑇1, 𝑇2 be tori over 𝑘. Let 𝑋1, 𝑋2 be toric varieties with torus 𝑇1, 𝑇2

respectively. A toric morphism from 𝑋1 to 𝑋2 is the data of a 𝑘-morphism 𝑋1 → 𝑋2 and a
𝑘-group homomorphism 𝑇1 → 𝑇2 that commute with the embeddings 𝑇1 → 𝑋1, 𝑇2 → 𝑋2 and
the actions. A toric isomorphism from 𝑋1 to 𝑋2 is the data of two isomorphisms 𝑋1 ≅ 𝑋2 and
𝑇1 ≅ 𝑇2 that commute with the embeddings 𝑇1 → 𝑋1, 𝑇2 → 𝑋2.

5.2 Affine toric varieties and affine monoids
In this section, we construct affine toric varieties from affine monoids, and show all affine toric
varieties arise from affine monoids in this way.

5.2.1 Toric varieties from affine monoids
Proposition 5.2.1 (The diagonalisable group scheme of an affine monoid algebra is an affine
toric variety).

Let 𝑘 be a field. Let 𝐺 be a finitely generated free abelian group. Let 𝑀 be an affine monoid
with Grothendieck group 𝐺. Then 𝐷𝑘(𝑀) is an affine toric variety over 𝑘 with torus 𝐷𝑘(𝐺).
Proof.

The map 𝐷𝑘(𝐺) ↪ 𝐷𝑘(𝑀) is given by the embedding 𝑀 ↪ 𝐺.
We identify 𝐷𝑘(𝐺) ≅ Spec 𝑘[𝐺], 𝐷𝑘(𝑀) ≅ Spec 𝑘[𝑀] using Proposition 4.2.3.
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By Proposition 2.3.12, 𝑘[𝐺] is a localization of 𝑘[𝑀]. Therefore the map Spec 𝑘[𝐺] ↪
Spec 𝑘[𝑀] is an open immersion.

This open immersion is dominant since Spec 𝑘[𝑀] is irreducible as 𝑘[𝑀] is a domain (Propo-
sition 2.2.4).

The group action 𝐷𝑘(𝐺)×𝐷𝑘(𝑀) → 𝐷𝑘(𝑀) comes from pulling back along 𝐷𝑘(𝐺) ↪ 𝐷𝑘(𝑀)
the left action 𝐷𝑘(𝑀) × 𝐷𝑘(𝑀) → 𝐷𝑘(𝑀) using Proposition 1.2.5.

5.2.2 Essential surjectivity from affine monoids to affine toric varieties
Definition 5.2.2 (The character eigenspace).

For a finite dimensional representation of a torus 𝑇 on 𝑊 , the character eigenspace of a
character 𝜒 ∈ 𝑋(𝑇 ) is

𝑊𝑚 = {𝑤 ∈ 𝑊 ∶ 𝑡 ⋅ 𝑤 = 𝜒(𝑡) for all 𝑡 ∈ 𝑇 }.

Proposition 5.2.3 (Decomposition into character eigenspaces).
The space decomposes into the direct sum of the character eigenspaces.

Proof. TODO

Definition 5.2.4.
There is a torus action on the semigroup algebra ℂ[𝑀]: given 𝑡 ∈ 𝑇𝑁 and 𝑓 ∈ ℂ[𝑀] define

𝑡 ⋅ 𝑓 = (𝑝 ↦ 𝑓(𝑡−1𝑝)).

Lemma 5.2.5. Let 𝐴 ⊆ ℂ[𝑀] be a stable subspace, then

𝐴 = ⨁
𝜒𝑚∈𝐴

ℂ ⋅ 𝜒𝑚.

Proof.
TODO

Definition 5.2.6 (Characters of a toric variety). Let 𝑘 be a field. Let 𝑇 be a torus over 𝑘. Let
𝑉 be a toric variety with torus 𝑘. The characters 𝑋(𝑉 ) of 𝑉 are defined as the intersection of
𝑋(𝑇 ) with the image of the map 𝑘[𝑉 ] → 𝑘[𝑇 ] of coordinate rings induced by the embedding
𝑇 ↪ 𝑉 .

Proposition 5.2.7 (Characters of a toric variety are an affine monoid).
Let 𝑘 be a field. Let 𝑇 be a torus over 𝑘. Let 𝑉 be a toric variety with torus 𝑘. Then 𝑋(𝑉 )

is an affine monoid.

Proof. TODO

5.3 Affine toric varieties and toric ideals
In this section, we define toric ideals, show that one can construct toric varieties from them and
that all toric varieties arise in this way.

25



5.3.1 Toric ideals and affine monoids
Definition 5.3.1 (Lattice ideal). Let 𝑅 be a ring. Let 𝐺 be a free abelian group and 𝑀 an
affine monoid whose Grothendieck group is 𝐺. Let 𝐿 ≤ 𝐺 be a sublattice. The lattice ideal of 𝐿
is the 𝑅-ideal of 𝑅[𝑀] defined by

𝐼𝐿 ∶= ⟨𝑋𝛼 − 𝑋𝛽|𝛼, 𝛽 ∈ 𝑀, 𝛼 − 𝛽 ∈ 𝐿⟩.
Definition 5.3.2.

Let 𝑅 be a ring. Let 𝑀 be an affine monoid. A toric ideal is a prime lattice 𝑅-ideal of 𝑅[𝑀].
Proposition 5.3.3 (An ideal is toric iff it is prime and generated by binomials).

An ideal is toric if and only if it’s prime and generated by binomials 𝑋𝛼 − 𝑋𝛽.
Proof.

A toric ideal is prime and generated by binomials by definition.
Assume 𝐼 is prime and generated by 𝑋𝛼−𝑋𝛽 ranging over (𝛼, 𝛽) ∈ 𝑆 for some set 𝑆 ⊆ 𝑀×𝑀 .
Note first that 𝐼 doesn’t contain any monomial. Indeed, 𝐼 is contained in the kernel of the

map 𝑅[𝑀] → 𝑅 given by 𝑋𝑚 ↦ 1.
Since 𝐼 is prime, this means that

𝑋𝛼+𝛾 − 𝑋𝛽+𝛾 ∈ 𝐼 ⟺ 𝑋𝛼 − 𝑋𝛽 ∈ 𝐼.
In particular, if 𝛼1 − 𝛽1 = 𝛼2 − 𝛽2, then Since 𝐼 is prime, this means that

𝑋𝛼1 − 𝑋𝛽1 ∈ 𝐼 ⟺ 𝑋𝛼1+𝛽2 − 𝑋𝛽1+𝛽2 ∈ 𝐼 ⟺ 𝑋𝛼2+𝛽1 − 𝑋𝛽1+𝛽2 ∈ 𝐼 ⟺ 𝑋𝛼2 − 𝑋𝛽2 ∈ 𝐼.
Now, we claim that 𝐼 = 𝐼𝐿 where 𝐿 ≤ 𝐺 is given by

span{𝛿 − 𝜀|(𝛿, 𝜀) ∈ 𝑆}.
Clearly, 𝐼 ⊆ 𝐼𝐿.
For the other direction, assume 𝛿, 𝜀 ∈ 𝑀, 𝛿 − 𝜀 ∈ 𝐿. Let’s prove 𝑋𝛿 − 𝑋𝜀 ∈ 𝐼 by induction

on 𝛿 − 𝜀 ∈ 𝐿:
• If 𝛿 − 𝜀 = 0, then 𝑋𝛿 − 𝑋𝜀 = 0 ∈ 𝐼 .

• If 𝛿1 − 𝜀1 = 𝜀2 − 𝛿2 and 𝑋𝛿2 − 𝑋𝜀2 ∈ 𝐼 , then

𝑋𝛿1 − 𝑋𝜀1 ∈ 𝐼 ⟺ 𝑋𝜀2 − 𝑋𝛿2 ⟺ 𝑋𝛿1 − 𝑋𝜀1

by the remark, and this holds by assumption.

• If 𝛿 − 𝜀 = 𝛼 − 𝛽 where (𝛼, 𝛽) ∈ 𝑆, then

𝑋𝛿 − 𝑋𝜀 ∈ 𝐼 ⟺ 𝑋𝛼 − 𝑋𝛽 ∈ 𝐼
by the remark, and this holds by assumption.

• Assume 𝛿1, 𝛿2, 𝜀1, 𝜀2 are such that 𝑋𝛿1 − 𝑋𝜀1 , 𝑋𝛿2 − 𝑋𝜀2 ∈ 𝐼 . Then

𝑋𝛿1+𝛿2 − 𝑋𝜀1+𝜀2 = (𝑋𝛿1 − 𝑋𝜀1)𝑋𝛿2 + 𝑋𝜀1(𝑋𝛿2 − 𝑋𝜀2) ∈ 𝐼.

Proposition 5.3.4 (The vanishing ideal of a closed toric embedding).
Let 𝑘 be a field. Let 𝑉 be a toric variety over 𝑘. Let 𝑖 ∶ 𝑉 ↪ 𝔸𝑛 be a closed toric embedding.

Then the vanishing ideal of 𝑖 is toric.
Proof.

TODO
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5.4 The 𝑌𝒜 construction
The 𝑌𝒜 construction is an alternative construction to the one we use in Section 5.2. Morally,
the difference is that 𝑌𝒜 is “extrinsic” while our construction is “intrinsic”. As a result, our
construction is canonical, while 𝑌𝒜 isn’t. 𝑌𝒜 is still useful to study toric ideals, but we do not
need it in Toric.
Definition 5.4.1.

Let 𝑆 be a scheme. Let 𝐺 be an abelian group. Let 𝑠 be an arbitrary indexing type, and
𝒜 ∶ 𝑠 → 𝐺 an indexed family. Let 𝑓 ′

𝒜 be the map

ℤ⊕𝑠 → 𝐺
𝑒𝑖 ↦ 𝒜𝑖.

and define Φ′
𝒜 ∶ 𝐷𝑆(𝐺) → 𝔾𝑠

𝑚 as the image under 𝐷𝑆 of 𝑓 ′
𝒜.

Definition 5.4.2.
Let 𝑆 be a scheme. Let 𝐺 be an abelian group. Let 𝑠 be an arbitrary indexing type, and

𝒜 ∶ 𝑠 → 𝐺 an indexed family. Let 𝑓𝒜 be the map

ℕ⊕𝑠 → 𝐺
𝑒𝑖 ↦ 𝒜𝑖.

and define Φ𝒜 ∶ 𝐷𝑆(𝐺) → 𝔸𝑠 as the image under 𝐷𝑆 of 𝑓𝒜.
Definition 5.4.3.

𝑌𝒜 is the scheme theoretic closure of im Φ𝒜 in 𝔸𝑠.
Proposition 5.4.4.

Let the base be 𝑆 = Spec 𝑘 for a field 𝑘, then 𝑌𝒜 is a toric variety.
Proof.

Torus: Define the torus 𝑇 ′ to be the one we get from 4.3.11 with quotient map 𝜋 ∶ 𝑇 → 𝑇 ′.
Open embedding: Since both 𝑌𝒜, 𝑇 ′ are closures of Φ, Φ′ and 𝔾𝑛

𝑚 → 𝔸𝑛 is an open embedding
we get an open embedding 𝜄 ∶ 𝑇 ′ → 𝑌𝒜 such that the map 𝜙 ∶ 𝑇 → 𝑌𝒜 factors as 𝜙 = 𝜄 ∘ 𝜋.
Dominant: Since 𝜙 is dominant, so is 𝜄. Action: Since 𝔾𝑛

𝑚 acts on 𝔸𝑛, we get a morphism
𝑎′ ∶ 𝑇 ′ ×𝑆 𝑌𝒜 → 𝔸𝑛. As 𝑇 ′ ×𝑆 𝑌𝒜 is reduced (TODO add lemma), to show that this factors
through 𝑌𝒜 it suffices to check that the image lies in 𝑌𝒜.

First, 𝑇 ′ ×𝑆 𝑇 ′ → 𝑇 ′ × 𝑌𝒜 is dominant, since 𝑇 ′ is flat and flat base change preserves
dominance (TODO add lemma). Since the image of 𝑇 ′ ×𝑆 𝑇 ′ is 𝑇 ′ we’re done for topological
reasons.

Equivariant: The inclusion of the torus is equivariant, since 𝔾𝑛
𝑚 → 𝔸𝑛 is.

Proposition 5.4.5.
The character lattice of the torus of 𝑌𝒜 is ℤ𝒜.

Proof.
Φ𝒜 ∶ 𝑇𝑁 → 𝔾𝑠

𝑚 factors through the torus of 𝑌𝒜. The conclusion follows from looking at the
corresponding maps of character lattices.

Proposition 5.4.6.
Let 𝑅 be a commutative ring. Let 𝐺 be an abelian group. Let 𝑠 be an arbitrary indexing type,

and 𝒜 ∶ 𝑠 → 𝐺 an indexed family. Let 𝐿 be the kernel of 𝑓 ′
𝒜 ∶ ℤ⊕𝑠 → 𝐺. Then the ideal of the

affine toric variety 𝑌𝒜 is
𝐼(𝑌𝒜) = 𝐼𝐿.
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Proof.
By the definition of 𝑌𝒜 as the scheme-theoretic closure of Φ𝒜, we have 𝐼(𝑌𝒜) = ker 𝑅[𝑓𝒜] =

ker 𝑅[𝑓 ′
𝒜] where, recall, 𝑓𝒜 ∶ ℕ𝑠 → 𝐺, 𝑓 ′

𝒜 ∶ ℤ𝑠 → 𝐺 are both given by 𝑒𝑖 ↦ 𝒜𝑖, and 𝑅[𝑓𝒜] ∶
𝑅[ℕ𝑠] → 𝑅[𝐺] is the pushforward.

By Proposition 2.3.11 with 𝐺 ∶= ℤ, 𝑆 ∶= 1,

ker 𝑅[𝑓𝒜] = span{𝑋𝛼 − 𝑋𝛽|𝛼, 𝛽 ∈ ℕ𝑠, 𝑓(𝛼) = 𝑓(𝛽)} = span{𝑋𝛼 − 𝑋𝛽|𝛼, 𝛽 ∈ ℕ𝑠, 𝛼 − 𝛽 ∈ 𝐿}.

Proposition 5.4.7.
If 𝑆 is an affine monoid and 𝒜 is a finite set generating 𝑆 as a monoid, then Spec 𝕜[𝑆] = 𝑌𝒜.

Proof.
We get a 𝕜-algebra homomorphism 𝜋 ∶ 𝕜[𝑥1, … , 𝑥𝑠] → 𝕜[ℤ𝑆] given by 𝒜; this induces a

morphism Φ𝒜 ∶ 𝑇 → 𝕜𝑠. The kernel of 𝜋 is the toric ideal of 𝑌𝒜 and 𝜋 is clearly surjective, so
𝑌𝒜 = 𝕍(ker(𝜋)) = Spec 𝕜[𝑥1, … , 𝑥𝑠]/ ker(𝜋) = Spec ℂ[𝑆].
Proposition 5.4.8.

The ideal of 𝑌𝒜 is a toric ideal.

Proof.
Immediate consequence of Proposition 5.4.6.

Theorem 5.4.9 (Affine toric varieties come from affine monoids).
Let 𝑘 be a field. Let 𝑇 be a torus over 𝑘. Let 𝑉 be a toric variety with torus 𝑘. Then there

exists a torus isomorphism 𝑉 ≅ 𝐷𝑘(𝑋(𝑉 )).
Proof.

TODO
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