Documentation

Init.Data.BitVec.Basic

We define bitvectors. We choose the Fin representation over others for its relative efficiency (Lean has special support for Nat), alignment with UIntXY types which are also represented with Fin, and the fact that bitwise operations on Fin are already defined. Some other possible representations are List Bool, { l : List Bool // l.length = w }, Fin w → Bool.

We define many of the bitvector operations from the QF_BV logic. of SMT-LIBv2.

structure BitVec (w : Nat) :

A bitvector of the specified width.

This is represented as the underlying Nat number in both the runtime and the kernel, inheriting all the special support for Nat.

  • ofFin :: (
    • toFin : Fin (2 ^ w)

      Interpret a bitvector as a number less than 2^w. O(1), because we use Fin as the internal representation of a bitvector.

  • )
Instances For
    def BitVec.decEq {n : Nat} (x : BitVec n) (y : BitVec n) :
    Decidable (x = y)

    Bitvectors have decidable equality. This should be used via the instance DecidableEq (BitVec n).

    Equations
    • { toFin := n_1 }.decEq { toFin := m } = if h : n_1 = m then isTrue else isFalse
    Instances For
      Equations
      • instDecidableEqBitVec = BitVec.decEq
      @[match_pattern]
      def BitVec.ofNatLt {n : Nat} (i : Nat) (p : i < 2 ^ n) :

      The BitVec with value i, given a proof that i < 2^n.

      Equations
      • i#'p = { toFin := i, p }
      Instances For
        @[match_pattern]
        def BitVec.ofNat (n : Nat) (i : Nat) :

        The BitVec with value i mod 2^n.

        Equations
        Instances For
          instance BitVec.instOfNat {n : Nat} {i : Nat} :
          Equations
          instance BitVec.natCastInst {w : Nat} :
          Equations
          def BitVec.toNat {n : Nat} (x : BitVec n) :

          Given a bitvector x, return the underlying Nat. This is O(1) because BitVec is a (zero-cost) wrapper around a Nat.

          Equations
          • x.toNat = x.toFin
          Instances For
            theorem BitVec.isLt {w : Nat} (x : BitVec w) :
            x.toNat < 2 ^ w

            Return the bound in terms of toNat.

            @[deprecated BitVec.isLt]
            theorem BitVec.toNat_lt {n : Nat} (x : BitVec n) :
            x.toNat < 2 ^ n
            @[simp]

            Theorem for normalizing the bit vector literal representation.

            @[simp]
            theorem BitVec.natCast_eq_ofNat (w : Nat) (x : Nat) :
            x = BitVec.ofNat w x

            All empty bitvectors are equal

            Equations
            @[reducible, inline]
            abbrev BitVec.nil :

            The empty bitvector

            Equations
            Instances For
              theorem BitVec.eq_nil (x : BitVec 0) :

              Every bitvector of length 0 is equal to nil, i.e., there is only one empty bitvector

              def BitVec.zero (n : Nat) :

              Return a bitvector 0 of size n. This is the bitvector with all zero bits.

              Equations
              Instances For
                Equations

                Bit vector of size n where all bits are 1s

                Equations
                Instances For
                  @[inline]
                  def BitVec.getLsb' {w : Nat} (x : BitVec w) (i : Fin w) :

                  Return the i-th least significant bit.

                  This will be renamed getLsb after the existing deprecated alias is removed.

                  Equations
                  • x.getLsb' i = x.toNat.testBit i
                  Instances For
                    @[inline]
                    def BitVec.getLsb? {w : Nat} (x : BitVec w) (i : Nat) :

                    Return the i-th least significant bit or none if i ≥ w.

                    Equations
                    • x.getLsb? i = if h : i < w then some (x.getLsb' i, h) else none
                    Instances For
                      @[inline]
                      def BitVec.getMsb' {w : Nat} (x : BitVec w) (i : Fin w) :

                      Return the i-th most significant bit.

                      This will be renamed getMsb after the existing deprecated alias is removed.

                      Equations
                      • x.getMsb' i = x.getLsb' w - 1 - i,
                      Instances For
                        @[inline]
                        def BitVec.getMsb? {w : Nat} (x : BitVec w) (i : Nat) :

                        Return the i-th most significant bit or none if i ≥ w.

                        Equations
                        • x.getMsb? i = if h : i < w then some (x.getMsb' i, h) else none
                        Instances For
                          @[inline]
                          def BitVec.getLsbD {w : Nat} (x : BitVec w) (i : Nat) :

                          Return the i-th least significant bit or false if i ≥ w.

                          Equations
                          • x.getLsbD i = x.toNat.testBit i
                          Instances For
                            @[deprecated BitVec.getLsbD]
                            def BitVec.getLsb {w : Nat} (x : BitVec w) (i : Nat) :

                            Return the i-th least significant bit or false if i ≥ w.

                            Equations
                            • x.getLsb i = x.getLsbD i
                            Instances For
                              @[inline]
                              def BitVec.getMsbD {w : Nat} (x : BitVec w) (i : Nat) :

                              Return the i-th most significant bit or false if i ≥ w.

                              Equations
                              Instances For
                                @[deprecated BitVec.getMsbD]
                                def BitVec.getMsb {w : Nat} (x : BitVec w) (i : Nat) :

                                Return the i-th most significant bit or false if i ≥ w.

                                Equations
                                • x.getMsb i = x.getMsbD i
                                Instances For
                                  @[inline]
                                  def BitVec.msb {n : Nat} (x : BitVec n) :

                                  Return most-significant bit in bitvector.

                                  Equations
                                  • x.msb = x.getMsbD 0
                                  Instances For
                                    instance BitVec.instGetElemNatBoolLt {w : Nat} :
                                    GetElem (BitVec w) Nat Bool fun (x : BitVec w) (i : Nat) => i < w
                                    Equations
                                    • BitVec.instGetElemNatBoolLt = { getElem := fun (xs : BitVec w) (i : Nat) (h : i < w) => xs.getLsb' i, h }
                                    @[simp]
                                    theorem BitVec.getLsb'_eq_getElem {w : Nat} (x : BitVec w) (i : Fin w) :
                                    x.getLsb' i = x[i]

                                    We prefer x[i] as the simp normal form for getLsb'

                                    @[simp]
                                    theorem BitVec.getLsb?_eq_getElem? {w : Nat} (x : BitVec w) (i : Nat) :
                                    x.getLsb? i = x[i]?

                                    We prefer x[i]? as the simp normal form for getLsb?

                                    def BitVec.toInt {n : Nat} (x : BitVec n) :

                                    Interpret the bitvector as an integer stored in two's complement form.

                                    Equations
                                    • x.toInt = if 2 * x.toNat < 2 ^ n then x.toNat else x.toNat - (2 ^ n)
                                    Instances For
                                      def BitVec.ofInt (n : Nat) (i : Int) :

                                      The BitVec with value (2^n + (i mod 2^n)) mod 2^n.

                                      Equations
                                      Instances For
                                        instance BitVec.instIntCast {w : Nat} :
                                        Equations

                                        Notation for bit vector literals. i#n is a shorthand for BitVec.ofNat n i.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          Unexpander for bit vector literals.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            Notation for bit vector literals without truncation. i#'lt is a shorthand for BitVec.ofNatLt i lt.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              Unexpander for bit vector literals without truncation.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def BitVec.toHex {n : Nat} (x : BitVec n) :

                                                Convert bitvector into a fixed-width hex number.

                                                Equations
                                                Instances For
                                                  instance BitVec.instRepr {n : Nat} :
                                                  Equations
                                                  Equations
                                                  def BitVec.add {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                  Addition for bit vectors. This can be interpreted as either signed or unsigned addition modulo 2^n.

                                                  SMT-Lib name: bvadd.

                                                  Equations
                                                  Instances For
                                                    instance BitVec.instAdd {n : Nat} :
                                                    Equations
                                                    • BitVec.instAdd = { add := BitVec.add }
                                                    def BitVec.sub {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                    Subtraction for bit vectors. This can be interpreted as either signed or unsigned subtraction modulo 2^n.

                                                    Equations
                                                    Instances For
                                                      instance BitVec.instSub {n : Nat} :
                                                      Equations
                                                      • BitVec.instSub = { sub := BitVec.sub }
                                                      def BitVec.neg {n : Nat} (x : BitVec n) :

                                                      Negation for bit vectors. This can be interpreted as either signed or unsigned negation modulo 2^n.

                                                      SMT-Lib name: bvneg.

                                                      Equations
                                                      Instances For
                                                        instance BitVec.instNeg {n : Nat} :
                                                        Equations
                                                        • BitVec.instNeg = { neg := BitVec.neg }
                                                        def BitVec.abs {n : Nat} (x : BitVec n) :

                                                        Return the absolute value of a signed bitvector.

                                                        Equations
                                                        • x.abs = if x.msb = true then x.neg else x
                                                        Instances For
                                                          def BitVec.mul {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                          Multiplication for bit vectors. This can be interpreted as either signed or unsigned negation modulo 2^n.

                                                          SMT-Lib name: bvmul.

                                                          Equations
                                                          Instances For
                                                            instance BitVec.instMul {n : Nat} :
                                                            Equations
                                                            • BitVec.instMul = { mul := BitVec.mul }
                                                            def BitVec.udiv {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                            Unsigned division for bit vectors using the Lean convention where division by zero returns zero.

                                                            Equations
                                                            • x.udiv y = (x.toNat / y.toNat)#'
                                                            Instances For
                                                              instance BitVec.instDiv {n : Nat} :
                                                              Equations
                                                              • BitVec.instDiv = { div := BitVec.udiv }
                                                              def BitVec.umod {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                              Unsigned modulo for bit vectors.

                                                              SMT-Lib name: bvurem.

                                                              Equations
                                                              • x.umod y = (x.toNat % y.toNat)#'
                                                              Instances For
                                                                instance BitVec.instMod {n : Nat} :
                                                                Equations
                                                                • BitVec.instMod = { mod := BitVec.umod }
                                                                def BitVec.smtUDiv {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                Unsigned division for bit vectors using the SMT-Lib convention where division by zero returns the allOnes bitvector.

                                                                SMT-Lib name: bvudiv.

                                                                Equations
                                                                Instances For
                                                                  def BitVec.sdiv {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                  Signed t-division for bit vectors using the Lean convention where division by zero returns zero.

                                                                  sdiv 7#4 2 = 3#4
                                                                  sdiv (-9#4) 2 = -4#4
                                                                  sdiv 5#4 -2 = -2#4
                                                                  sdiv (-7#4) (-2) = 3#4
                                                                  
                                                                  Equations
                                                                  Instances For
                                                                    def BitVec.smtSDiv {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                    Signed division for bit vectors using SMTLIB rules for division by zero.

                                                                    Specifically, smtSDiv x 0 = if x >= 0 then -1 else 1

                                                                    SMT-Lib name: bvsdiv.

                                                                    Equations
                                                                    Instances For
                                                                      def BitVec.srem {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                      Remainder for signed division rounding to zero.

                                                                      SMT_Lib name: bvsrem.

                                                                      Equations
                                                                      Instances For
                                                                        def BitVec.smod {m : Nat} (x : BitVec m) (y : BitVec m) :

                                                                        Remainder for signed division rounded to negative infinity.

                                                                        SMT_Lib name: bvsmod.

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For

                                                                          Turn a Bool into a bitvector of length 1

                                                                          Equations
                                                                          Instances For
                                                                            def BitVec.fill (w : Nat) (b : Bool) :

                                                                            Fills a bitvector with w copies of the bit b.

                                                                            Equations
                                                                            Instances For
                                                                              def BitVec.ult {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                              Unsigned less-than for bit vectors.

                                                                              SMT-Lib name: bvult.

                                                                              Equations
                                                                              Instances For
                                                                                instance BitVec.instLT {n : Nat} :
                                                                                Equations
                                                                                • BitVec.instLT = { lt := fun (x1 x2 : BitVec n) => x1.toNat < x2.toNat }
                                                                                instance BitVec.instDecidableLt {n : Nat} (x : BitVec n) (y : BitVec n) :
                                                                                Decidable (x < y)
                                                                                Equations
                                                                                def BitVec.ule {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                                Unsigned less-than-or-equal-to for bit vectors.

                                                                                SMT-Lib name: bvule.

                                                                                Equations
                                                                                Instances For
                                                                                  instance BitVec.instLE {n : Nat} :
                                                                                  Equations
                                                                                  • BitVec.instLE = { le := fun (x1 x2 : BitVec n) => x1.toNat x2.toNat }
                                                                                  instance BitVec.instDecidableLe {n : Nat} (x : BitVec n) (y : BitVec n) :
                                                                                  Equations
                                                                                  def BitVec.slt {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                                  Signed less-than for bit vectors.

                                                                                  BitVec.slt 6#4 7 = true
                                                                                  BitVec.slt 7#4 8 = false
                                                                                  

                                                                                  SMT-Lib name: bvslt.

                                                                                  Equations
                                                                                  Instances For
                                                                                    def BitVec.sle {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                                    Signed less-than-or-equal-to for bit vectors.

                                                                                    SMT-Lib name: bvsle.

                                                                                    Equations
                                                                                    Instances For
                                                                                      @[inline]
                                                                                      def BitVec.cast {n : Nat} {m : Nat} (eq : n = m) (x : BitVec n) :

                                                                                      cast eq x embeds x into an equal BitVec type.

                                                                                      Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem BitVec.cast_ofNat {n : Nat} {m : Nat} (h : n = m) (x : Nat) :
                                                                                        @[simp]
                                                                                        theorem BitVec.cast_cast {n : Nat} {m : Nat} {k : Nat} (h₁ : n = m) (h₂ : m = k) (x : BitVec n) :
                                                                                        BitVec.cast h₂ (BitVec.cast h₁ x) = BitVec.cast x
                                                                                        @[simp]
                                                                                        theorem BitVec.cast_eq {n : Nat} (h : n = n) (x : BitVec n) :
                                                                                        def BitVec.extractLsb' {n : Nat} (start : Nat) (len : Nat) (x : BitVec n) :
                                                                                        BitVec len

                                                                                        Extraction of bits start to start + len - 1 from a bit vector of size n to yield a new bitvector of size len. If start + len > n, then the vector will be zero-padded in the high bits.

                                                                                        Equations
                                                                                        Instances For
                                                                                          def BitVec.extractLsb {n : Nat} (hi : Nat) (lo : Nat) (x : BitVec n) :
                                                                                          BitVec (hi - lo + 1)

                                                                                          Extraction of bits hi (inclusive) down to lo (inclusive) from a bit vector of size n to yield a new bitvector of size hi - lo + 1.

                                                                                          SMT-Lib name: extract.

                                                                                          Equations
                                                                                          Instances For
                                                                                            def BitVec.zeroExtend' {n : Nat} {w : Nat} (le : n w) (x : BitVec n) :

                                                                                            A version of zeroExtend that requires a proof, but is a noop.

                                                                                            Equations
                                                                                            Instances For
                                                                                              def BitVec.shiftLeftZeroExtend {w : Nat} (msbs : BitVec w) (m : Nat) :
                                                                                              BitVec (w + m)

                                                                                              shiftLeftZeroExtend x n returns zeroExtend (w+n) x <<< n without needing to compute x % 2^(2+n).

                                                                                              Equations
                                                                                              • msbs.shiftLeftZeroExtend m = (msbs.toNat <<< m)#'
                                                                                              Instances For
                                                                                                def BitVec.zeroExtend {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                                Zero extend vector x of length w by adding zeros in the high bits until it has length v. If v < w then it truncates the high bits instead.

                                                                                                SMT-Lib name: zero_extend.

                                                                                                Equations
                                                                                                Instances For
                                                                                                  @[reducible, inline]
                                                                                                  abbrev BitVec.truncate {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                                  Truncate the high bits of bitvector x of length w, resulting in a vector of length v. If v > w then it zero-extends the vector instead.

                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    def BitVec.signExtend {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                                    Sign extend a vector of length w, extending with i additional copies of the most significant bit in x. If x is an empty vector, then the sign is treated as zero.

                                                                                                    SMT-Lib name: sign_extend.

                                                                                                    Equations
                                                                                                    Instances For
                                                                                                      def BitVec.and {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                                                      Bitwise AND for bit vectors.

                                                                                                      0b1010#4 &&& 0b0110#4 = 0b0010#4
                                                                                                      

                                                                                                      SMT-Lib name: bvand.

                                                                                                      Equations
                                                                                                      • x.and y = (x.toNat &&& y.toNat)#'
                                                                                                      Instances For
                                                                                                        instance BitVec.instAndOp {w : Nat} :
                                                                                                        Equations
                                                                                                        • BitVec.instAndOp = { and := BitVec.and }
                                                                                                        def BitVec.or {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                                                        Bitwise OR for bit vectors.

                                                                                                        0b1010#4 ||| 0b0110#4 = 0b1110#4
                                                                                                        

                                                                                                        SMT-Lib name: bvor.

                                                                                                        Equations
                                                                                                        • x.or y = (x.toNat ||| y.toNat)#'
                                                                                                        Instances For
                                                                                                          instance BitVec.instOrOp {w : Nat} :
                                                                                                          Equations
                                                                                                          • BitVec.instOrOp = { or := BitVec.or }
                                                                                                          def BitVec.xor {n : Nat} (x : BitVec n) (y : BitVec n) :

                                                                                                          Bitwise XOR for bit vectors.

                                                                                                          0b1010#4 ^^^ 0b0110#4 = 0b1100#4
                                                                                                          

                                                                                                          SMT-Lib name: bvxor.

                                                                                                          Equations
                                                                                                          • x.xor y = (x.toNat ^^^ y.toNat)#'
                                                                                                          Instances For
                                                                                                            instance BitVec.instXor {w : Nat} :
                                                                                                            Equations
                                                                                                            • BitVec.instXor = { xor := BitVec.xor }
                                                                                                            def BitVec.not {n : Nat} (x : BitVec n) :

                                                                                                            Bitwise NOT for bit vectors.

                                                                                                            ~~~(0b0101#4) == 0b1010
                                                                                                            

                                                                                                            SMT-Lib name: bvnot.

                                                                                                            Equations
                                                                                                            Instances For
                                                                                                              Equations
                                                                                                              • BitVec.instComplement = { complement := BitVec.not }
                                                                                                              def BitVec.shiftLeft {n : Nat} (x : BitVec n) (s : Nat) :

                                                                                                              Left shift for bit vectors. The low bits are filled with zeros. As a numeric operation, this is equivalent to x * 2^s, modulo 2^n.

                                                                                                              SMT-Lib name: bvshl except this operator uses a Nat shift value.

                                                                                                              Equations
                                                                                                              Instances For
                                                                                                                Equations
                                                                                                                • BitVec.instHShiftLeftNat = { hShiftLeft := BitVec.shiftLeft }
                                                                                                                def BitVec.ushiftRight {n : Nat} (x : BitVec n) (s : Nat) :

                                                                                                                (Logical) right shift for bit vectors. The high bits are filled with zeros. As a numeric operation, this is equivalent to x / 2^s, rounding down.

                                                                                                                SMT-Lib name: bvlshr except this operator uses a Nat shift value.

                                                                                                                Equations
                                                                                                                • x.ushiftRight s = (x.toNat >>> s)#'
                                                                                                                Instances For
                                                                                                                  Equations
                                                                                                                  • BitVec.instHShiftRightNat = { hShiftRight := BitVec.ushiftRight }
                                                                                                                  def BitVec.sshiftRight {n : Nat} (x : BitVec n) (s : Nat) :

                                                                                                                  Arithmetic right shift for bit vectors. The high bits are filled with the most-significant bit. As a numeric operation, this is equivalent to x.toInt >>> s.

                                                                                                                  SMT-Lib name: bvashr except this operator uses a Nat shift value.

                                                                                                                  Equations
                                                                                                                  Instances For
                                                                                                                    instance BitVec.instHShiftLeft {m : Nat} {n : Nat} :
                                                                                                                    Equations
                                                                                                                    • BitVec.instHShiftLeft = { hShiftLeft := fun (x : BitVec m) (y : BitVec n) => x <<< y.toNat }
                                                                                                                    instance BitVec.instHShiftRight {m : Nat} {n : Nat} :
                                                                                                                    Equations
                                                                                                                    • BitVec.instHShiftRight = { hShiftRight := fun (x : BitVec m) (y : BitVec n) => x >>> y.toNat }
                                                                                                                    def BitVec.sshiftRight' {n : Nat} {m : Nat} (a : BitVec n) (s : BitVec m) :

                                                                                                                    Arithmetic right shift for bit vectors. The high bits are filled with the most-significant bit. As a numeric operation, this is equivalent to a.toInt >>> s.toNat.

                                                                                                                    SMT-Lib name: bvashr.

                                                                                                                    Equations
                                                                                                                    • a.sshiftRight' s = a.sshiftRight s.toNat
                                                                                                                    Instances For
                                                                                                                      def BitVec.rotateLeftAux {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                                      Auxiliary function for rotateLeft, which does not take into account the case where the rotation amount is greater than the bitvector width.

                                                                                                                      Equations
                                                                                                                      Instances For
                                                                                                                        def BitVec.rotateLeft {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                                        Rotate left for bit vectors. All the bits of x are shifted to higher positions, with the top n bits wrapping around to fill the low bits.

                                                                                                                        rotateLeft  0b0011#4 3 = 0b1001
                                                                                                                        

                                                                                                                        SMT-Lib name: rotate_left except this operator uses a Nat shift amount.

                                                                                                                        Equations
                                                                                                                        • x.rotateLeft n = x.rotateLeftAux (n % w)
                                                                                                                        Instances For
                                                                                                                          def BitVec.rotateRightAux {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                                          Auxiliary function for rotateRight, which does not take into account the case where the rotation amount is greater than the bitvector width.

                                                                                                                          Equations
                                                                                                                          Instances For
                                                                                                                            def BitVec.rotateRight {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                                            Rotate right for bit vectors. All the bits of x are shifted to lower positions, with the bottom n bits wrapping around to fill the high bits.

                                                                                                                            rotateRight 0b01001#5 1 = 0b10100
                                                                                                                            

                                                                                                                            SMT-Lib name: rotate_right except this operator uses a Nat shift amount.

                                                                                                                            Equations
                                                                                                                            • x.rotateRight n = x.rotateRightAux (n % w)
                                                                                                                            Instances For
                                                                                                                              def BitVec.append {n : Nat} {m : Nat} (msbs : BitVec n) (lsbs : BitVec m) :
                                                                                                                              BitVec (n + m)

                                                                                                                              Concatenation of bitvectors. This uses the "big endian" convention that the more significant input is on the left, so 0xAB#8 ++ 0xCD#8 = 0xABCD#16.

                                                                                                                              SMT-Lib name: concat.

                                                                                                                              Equations
                                                                                                                              Instances For
                                                                                                                                instance BitVec.instHAppendHAddNat {w : Nat} {v : Nat} :
                                                                                                                                HAppend (BitVec w) (BitVec v) (BitVec (w + v))
                                                                                                                                Equations
                                                                                                                                • BitVec.instHAppendHAddNat = { hAppend := BitVec.append }
                                                                                                                                def BitVec.replicate {w : Nat} (i : Nat) :
                                                                                                                                BitVec wBitVec (w * i)

                                                                                                                                replicate i x concatenates i copies of x into a new vector of length w*i.

                                                                                                                                Equations
                                                                                                                                Instances For

                                                                                                                                  Cons and Concat #

                                                                                                                                  We give special names to the operations of adding a single bit to either end of a bitvector. We follow the precedent of Vector.cons/Vector.concat both for the name, and for the decision to have the resulting size be n + 1 for both operations (rather than 1 + n, which would be the result of appending a single bit to the front in the naive implementation).

                                                                                                                                  def BitVec.concat {n : Nat} (msbs : BitVec n) (lsb : Bool) :
                                                                                                                                  BitVec (n + 1)

                                                                                                                                  Append a single bit to the end of a bitvector, using big endian order (see append). That is, the new bit is the least significant bit.

                                                                                                                                  Equations
                                                                                                                                  Instances For
                                                                                                                                    def BitVec.cons {n : Nat} (msb : Bool) (lsbs : BitVec n) :
                                                                                                                                    BitVec (n + 1)

                                                                                                                                    Prepend a single bit to the front of a bitvector, using big endian order (see append). That is, the new bit is the most significant bit.

                                                                                                                                    Equations
                                                                                                                                    Instances For
                                                                                                                                      theorem BitVec.append_ofBool {w : Nat} (msbs : BitVec w) (lsb : Bool) :
                                                                                                                                      msbs ++ BitVec.ofBool lsb = msbs.concat lsb
                                                                                                                                      theorem BitVec.ofBool_append {w : Nat} (msb : Bool) (lsbs : BitVec w) :
                                                                                                                                      BitVec.ofBool msb ++ lsbs = BitVec.cast (BitVec.cons msb lsbs)
                                                                                                                                      def BitVec.twoPow (w : Nat) (i : Nat) :

                                                                                                                                      twoPow w i is the bitvector 2^i if i < w, and 0 otherwise. That is, 2 to the power i. For the bitwise point of view, it has the ith bit as 1 and all other bits as 0.

                                                                                                                                      Equations
                                                                                                                                      Instances For

                                                                                                                                        We add simp-lemmas that rewrite bitvector operations into the equivalent notation

                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.append_eq {w : Nat} {v : Nat} (x : BitVec w) (y : BitVec v) :
                                                                                                                                        x.append y = x ++ y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.shiftLeft_eq {w : Nat} (x : BitVec w) (n : Nat) :
                                                                                                                                        x.shiftLeft n = x <<< n
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.ushiftRight_eq {w : Nat} (x : BitVec w) (n : Nat) :
                                                                                                                                        x.ushiftRight n = x >>> n
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.not_eq {w : Nat} (x : BitVec w) :
                                                                                                                                        x.not = ~~~x
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.and_eq {w : Nat} (x : BitVec w) (y : BitVec w) :
                                                                                                                                        x.and y = x &&& y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.or_eq {w : Nat} (x : BitVec w) (y : BitVec w) :
                                                                                                                                        x.or y = x ||| y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.xor_eq {w : Nat} (x : BitVec w) (y : BitVec w) :
                                                                                                                                        x.xor y = x ^^^ y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.neg_eq {w : Nat} (x : BitVec w) :
                                                                                                                                        x.neg = -x
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.add_eq {w : Nat} (x : BitVec w) (y : BitVec w) :
                                                                                                                                        x.add y = x + y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.sub_eq {w : Nat} (x : BitVec w) (y : BitVec w) :
                                                                                                                                        x.sub y = x - y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.mul_eq {w : Nat} (x : BitVec w) (y : BitVec w) :
                                                                                                                                        x.mul y = x * y
                                                                                                                                        @[simp]
                                                                                                                                        theorem BitVec.zero_eq {n : Nat} :
                                                                                                                                        def BitVec.ofBoolListBE (bs : List Bool) :
                                                                                                                                        BitVec bs.length

                                                                                                                                        Converts a list of Bools to a big-endian BitVec.

                                                                                                                                        Equations
                                                                                                                                        Instances For
                                                                                                                                          def BitVec.ofBoolListLE (bs : List Bool) :
                                                                                                                                          BitVec bs.length

                                                                                                                                          Converts a list of Bools to a little-endian BitVec.

                                                                                                                                          Equations
                                                                                                                                          Instances For