theorem
AddSubgroup.op.proof_1
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
:
∀ {a b : Gᵃᵒᵖ}, a ∈ AddOpposite.unop ⁻¹' ↑H → b ∈ AddOpposite.unop ⁻¹' ↑H → AddOpposite.unop b + AddOpposite.unop a ∈ H
Pull an additive subgroup back to an opposite additive subgroup along AddOpposite.unop
Equations
Instances For
theorem
AddSubgroup.op.proof_2
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
:
∀ {x : Gᵃᵒᵖ}, AddOpposite.unop x ∈ H → -AddOpposite.unop x ∈ H
@[simp]
Pull a subgroup back to an opposite subgroup along MulOpposite.unop
Instances For
Equations
- H.instVAdd = H.op.vadd
@[simp]
theorem
AddSubgroup.mem_op
{G : Type u_2}
[AddGroup G]
{x : Gᵃᵒᵖ}
{S : AddSubgroup G}
:
x ∈ S.op ↔ AddOpposite.unop x ∈ S
@[simp]
theorem
Subgroup.mem_op
{G : Type u_2}
[Group G]
{x : Gᵐᵒᵖ}
{S : Subgroup G}
:
x ∈ S.op ↔ MulOpposite.unop x ∈ S
@[simp]
theorem
AddSubgroup.op_toAddSubmonoid
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
:
H.op.toAddSubmonoid = H.op
Pull an opposite additive subgroup back to an additive subgroup along AddOpposite.op
Equations
Instances For
theorem
AddSubgroup.unop.proof_3
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
∀ {x : G}, AddOpposite.op x ∈ H → -AddOpposite.op x ∈ H
@[simp]
Pull an opposite subgroup back to a subgroup along MulOpposite.op
Instances For
@[simp]
theorem
AddSubgroup.mem_unop
{G : Type u_2}
[AddGroup G]
{x : G}
{S : AddSubgroup Gᵃᵒᵖ}
:
x ∈ S.unop ↔ AddOpposite.op x ∈ S
@[simp]
theorem
Subgroup.mem_unop
{G : Type u_2}
[Group G]
{x : G}
{S : Subgroup Gᵐᵒᵖ}
:
x ∈ S.unop ↔ MulOpposite.op x ∈ S
@[simp]
theorem
AddSubgroup.unop_toAddSubmonoid
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
H.unop.toAddSubmonoid = H.unop
@[simp]
@[simp]
Lattice results #
theorem
AddSubgroup.op_le_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup G}
{S₂ : AddSubgroup Gᵃᵒᵖ}
:
theorem
AddSubgroup.le_op_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup Gᵃᵒᵖ}
{S₂ : AddSubgroup G}
:
@[simp]
theorem
AddSubgroup.op_le_op_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup G}
{S₂ : AddSubgroup G}
:
@[simp]
theorem
AddSubgroup.unop_le_unop_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup Gᵃᵒᵖ}
{S₂ : AddSubgroup Gᵃᵒᵖ}
:
@[simp]
theorem
AddSubgroup.opEquiv_apply
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
:
AddSubgroup.opEquiv H = H.op
@[simp]
theorem
AddSubgroup.opEquiv_symm_apply
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
(RelIso.symm AddSubgroup.opEquiv) H = H.unop
@[simp]
theorem
Subgroup.opEquiv_symm_apply
{G : Type u_2}
[Group G]
(H : Subgroup Gᵐᵒᵖ)
:
(RelIso.symm Subgroup.opEquiv) H = H.unop
@[simp]
@[simp]
theorem
AddSubgroup.unop_inj
{G : Type u_2}
[AddGroup G]
{S : AddSubgroup Gᵃᵒᵖ}
{T : AddSubgroup Gᵃᵒᵖ}
:
@[simp]
@[simp]
theorem
AddSubgroup.unop_sup
{G : Type u_2}
[AddGroup G]
(S₁ : AddSubgroup Gᵃᵒᵖ)
(S₂ : AddSubgroup Gᵃᵒᵖ)
:
theorem
AddSubgroup.unop_inf
{G : Type u_2}
[AddGroup G]
(S₁ : AddSubgroup Gᵃᵒᵖ)
(S₂ : AddSubgroup Gᵃᵒᵖ)
:
theorem
AddSubgroup.unop_iSup
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup Gᵃᵒᵖ)
:
theorem
AddSubgroup.unop_iInf
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup Gᵃᵒᵖ)
:
theorem
AddSubgroup.op_closure
{G : Type u_2}
[AddGroup G]
(s : Set G)
:
(AddSubgroup.closure s).op = AddSubgroup.closure (AddOpposite.unop ⁻¹' s)
theorem
Subgroup.op_closure
{G : Type u_2}
[Group G]
(s : Set G)
:
(Subgroup.closure s).op = Subgroup.closure (MulOpposite.unop ⁻¹' s)
theorem
AddSubgroup.unop_closure
{G : Type u_2}
[AddGroup G]
(s : Set Gᵃᵒᵖ)
:
(AddSubgroup.closure s).unop = AddSubgroup.closure (AddOpposite.op ⁻¹' s)
theorem
Subgroup.unop_closure
{G : Type u_2}
[Group G]
(s : Set Gᵐᵒᵖ)
:
(Subgroup.closure s).unop = Subgroup.closure (MulOpposite.op ⁻¹' s)
Bijection between an additive subgroup H
and its opposite.
Equations
- H.equivOp = AddOpposite.opEquiv.subtypeEquiv ⋯
Instances For
@[simp]
theorem
AddSubgroup.equivOp_symm_apply_coe
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
(b : { b : Gᵃᵒᵖ // b ∈ H.op })
:
↑(H.equivOp.symm b) = AddOpposite.unop ↑b
@[simp]
theorem
Subgroup.equivOp_symm_apply_coe
{G : Type u_2}
[Group G]
(H : Subgroup G)
(b : { b : Gᵐᵒᵖ // b ∈ H.op })
:
↑(H.equivOp.symm b) = MulOpposite.unop ↑b
@[simp]
theorem
Subgroup.equivOp_apply_coe
{G : Type u_2}
[Group G]
(H : Subgroup G)
(a : { a : G // a ∈ H })
:
↑(H.equivOp a) = MulOpposite.op ↑a
@[simp]
theorem
AddSubgroup.equivOp_apply_coe
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
(a : { a : G // a ∈ H })
:
↑(H.equivOp a) = AddOpposite.op ↑a
instance
AddSubgroup.instEncodableSubtypeAddOppositeMemOp
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Encodable { x : G // x ∈ H }]
:
Equations
- H.instEncodableSubtypeAddOppositeMemOp = Encodable.ofEquiv { x : G // x ∈ H } H.equivOp.symm
theorem
AddSubgroup.op_normalizer
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
:
H.normalizer.op = H.op.normalizer
theorem
AddSubgroup.unop_normalizer
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
H.normalizer.unop = H.unop.normalizer
@[simp]
theorem
AddSubgroup.normal_op
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
:
H.op.Normal ↔ H.Normal
Alias of the reverse direction of Subgroup.normal_op
.
Alias of the forward direction of Subgroup.normal_op
.
theorem
AddSubgroup.Normal.op
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
:
H.Normal → H.op.Normal
theorem
AddSubgroup.Normal.of_op
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
:
H.op.Normal → H.Normal
instance
AddSubgroup.op.instNormal
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
[H.Normal]
:
H.op.Normal
Equations
- ⋯ = ⋯
@[simp]
theorem
AddSubgroup.normal_unop
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
:
H.unop.Normal ↔ H.Normal
Alias of the reverse direction of Subgroup.normal_unop
.
theorem
Subgroup.Normal.of_unop
{G : Type u_2}
[Group G]
{H : Subgroup Gᵐᵒᵖ}
:
H.unop.Normal → H.Normal
Alias of the forward direction of Subgroup.normal_unop
.
theorem
AddSubgroup.Normal.unop
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
:
H.Normal → H.unop.Normal
theorem
AddSubgroup.Normal.of_unop
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
:
H.unop.Normal → H.Normal
instance
AddSubgroup.unop.instNormal
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
[H.Normal]
:
H.unop.Normal
Equations
- ⋯ = ⋯