Additional instances for ordered commutative groups. #
theorem
OrderDual.orderedAddCommGroup.proof_3
{α : Type u_1}
[OrderedAddCommGroup α]
(n : ℕ)
(a : αᵒᵈ)
:
SubNegMonoid.zsmul (Int.ofNat n.succ) a = SubNegMonoid.zsmul (Int.ofNat n) a + a
theorem
OrderDual.orderedAddCommGroup.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(a : αᵒᵈ)
(b : αᵒᵈ)
:
theorem
OrderDual.orderedAddCommGroup.proof_6
{α : Type u_1}
[OrderedAddCommGroup α]
(a : αᵒᵈ)
(b : αᵒᵈ)
:
theorem
OrderDual.orderedAddCommGroup.proof_2
{α : Type u_1}
[OrderedAddCommGroup α]
(a : αᵒᵈ)
:
SubNegMonoid.zsmul 0 a = 0
theorem
OrderDual.orderedAddCommGroup.proof_4
{α : Type u_1}
[OrderedAddCommGroup α]
(n : ℕ)
(a : αᵒᵈ)
:
SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑n.succ) a
Equations
- OrderDual.orderedAddCommGroup = OrderedAddCommGroup.mk ⋯
Equations
- OrderDual.orderedCommGroup = OrderedCommGroup.mk ⋯
theorem
OrderDual.linearOrderedAddCommGroup.proof_1
{α : Type u_1}
[LinearOrderedAddCommGroup α]
(a : αᵒᵈ)
(b : αᵒᵈ)
:
Equations
- OrderDual.linearOrderedAddCommGroup = LinearOrderedAddCommGroup.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯
theorem
OrderDual.linearOrderedAddCommGroup.proof_3
{α : Type u_1}
[LinearOrderedAddCommGroup α]
(a : αᵒᵈ)
(b : αᵒᵈ)
:
theorem
OrderDual.linearOrderedAddCommGroup.proof_2
{α : Type u_1}
[LinearOrderedAddCommGroup α]
(a : αᵒᵈ)
(b : αᵒᵈ)
:
theorem
OrderDual.linearOrderedAddCommGroup.proof_4
{α : Type u_1}
[LinearOrderedAddCommGroup α]
(a : αᵒᵈ)
(b : αᵒᵈ)
:
compare a b = compareOfLessAndEq a b
Equations
- OrderDual.linearOrderedCommGroup = LinearOrderedCommGroup.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯