Algebraic structures on the set of positive numbers #
In this file we define various instances (AddSemigroup
, OrderedCommMonoid
etc) on the
type {x : R // 0 < x}
. In each case we try to require the weakest possible typeclass
assumptions on R
but possibly, there is a room for improvements.
instance
Positive.instAddSubtypeLtOfNat_mathlib
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
instance
Positive.addSemigroup
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
AddSemigroup { x : M // 0 < x }
Equations
- Positive.addSemigroup = Function.Injective.addSemigroup (fun (a : { x : M // 0 < x }) => ↑a) ⋯ ⋯
instance
Positive.addCommSemigroup
{M : Type u_4}
[AddCommMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
AddCommSemigroup { x : M // 0 < x }
Equations
- Positive.addCommSemigroup = Function.Injective.addCommSemigroup (fun (a : { x : M // 0 < x }) => ↑a) ⋯ ⋯
instance
Positive.addLeftCancelSemigroup
{M : Type u_4}
[AddLeftCancelMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
AddLeftCancelSemigroup { x : M // 0 < x }
Equations
- Positive.addLeftCancelSemigroup = Function.Injective.addLeftCancelSemigroup (fun (a : { x : M // 0 < x }) => ↑a) ⋯ ⋯
instance
Positive.addRightCancelSemigroup
{M : Type u_4}
[AddRightCancelMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
AddRightCancelSemigroup { x : M // 0 < x }
Equations
- Positive.addRightCancelSemigroup = Function.Injective.addRightCancelSemigroup (fun (a : { x : M // 0 < x }) => ↑a) ⋯ ⋯
instance
Positive.covariantClass_add_lt
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
Equations
- ⋯ = ⋯
instance
Positive.covariantClass_swap_add_lt
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
[CovariantClass M M (Function.swap fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
CovariantClass { x : M // 0 < x } { x : M // 0 < x } (Function.swap fun (x1 x2 : { x : M // 0 < x }) => x1 + x2)
fun (x1 x2 : { x : M // 0 < x }) => x1 < x2
Equations
- ⋯ = ⋯
instance
Positive.contravariantClass_add_lt
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
[ContravariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
Equations
- ⋯ = ⋯
instance
Positive.contravariantClass_swap_add_lt
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
[ContravariantClass M M (Function.swap fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
ContravariantClass { x : M // 0 < x } { x : M // 0 < x } (Function.swap fun (x1 x2 : { x : M // 0 < x }) => x1 + x2)
fun (x1 x2 : { x : M // 0 < x }) => x1 < x2
Equations
- ⋯ = ⋯
instance
Positive.contravariantClass_add_le
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
[ContravariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 ≤ x2]
:
Equations
- ⋯ = ⋯
instance
Positive.contravariantClass_swap_add_le
{M : Type u_1}
[AddMonoid M]
[Preorder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
[ContravariantClass M M (Function.swap fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 ≤ x2]
:
ContravariantClass { x : M // 0 < x } { x : M // 0 < x } (Function.swap fun (x1 x2 : { x : M // 0 < x }) => x1 + x2)
fun (x1 x2 : { x : M // 0 < x }) => x1 ≤ x2
Equations
- ⋯ = ⋯
instance
Positive.covariantClass_add_le
{M : Type u_1}
[AddMonoid M]
[PartialOrder M]
[CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 < x2]
:
Equations
- ⋯ = ⋯
@[simp]
theorem
Positive.val_mul
{R : Type u_2}
[StrictOrderedSemiring R]
(x : { x : R // 0 < x })
(y : { x : R // 0 < x })
:
@[simp]
theorem
Positive.val_pow
{R : Type u_2}
[StrictOrderedSemiring R]
(x : { x : R // 0 < x })
(n : ℕ)
:
Equations
- Positive.instSemigroupSubtypeLtOfNat = Function.Injective.semigroup Subtype.val ⋯ ⋯
Equations
- Positive.instDistribSubtypeLtOfNat = Function.Injective.distrib (fun (a : { x : R // 0 < x }) => ↑a) ⋯ ⋯ ⋯
Equations
- Positive.instOneSubtypeLtOfNat = { one := ⟨1, ⋯⟩ }
Equations
- Positive.instMonoidSubtypeLtOfNat = Function.Injective.monoid (fun (a : { x : R // 0 < x }) => ↑a) ⋯ ⋯ ⋯ ⋯
instance
Positive.orderedCommMonoid
{R : Type u_2}
[StrictOrderedCommSemiring R]
:
OrderedCommMonoid { x : R // 0 < x }
Equations
- Positive.orderedCommMonoid = OrderedCommMonoid.mk ⋯
instance
Positive.linearOrderedCancelCommMonoid
{R : Type u_2}
[LinearOrderedCommSemiring R]
:
LinearOrderedCancelCommMonoid { x : R // 0 < x }
If R
is a nontrivial linear ordered commutative semiring, then {x : R // 0 < x}
is a linear
ordered cancellative commutative monoid.
Equations
- Positive.linearOrderedCancelCommMonoid = LinearOrderedCancelCommMonoid.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯