Documentation

Mathlib.Init.Algebra.Classes

Note about Mathlib/Init/ #

The files in Mathlib/Init are leftovers from the port from Mathlib3. (They contain content moved from lean3 itself that Mathlib needed but was not moved to lean4.)

We intend to move all the content of these files out into the main Mathlib directory structure. Contributions assisting with this are appreciated.

(Jeremy Tan: The only non-deprecated thing in this file now is IsSymmOp)

Unbundled algebra classes #

These classes were part of an incomplete refactor described here on the github Wiki. However a subset of them are widely used in mathlib3, and it has been tricky to clean this up as this file was in core Lean 3.

class IsSymmOp (α : Sort u) (β : Sort v) (op : ααβ) :

IsSymmOp α β op where op : α → α → β is the natural generalisation of Std.IsCommutative (β = α) and IsSymm (β = Prop).

  • symm_op : ∀ (a b : α), op a b = op b a
Instances
    theorem IsSymmOp.symm_op {α : Sort u} {β : Sort v} {op : ααβ} [self : IsSymmOp α β op] (a : α) (b : α) :
    op a b = op b a
    @[instance 100]
    instance isSymmOp_of_isCommutative (α : Sort u) (op : ααα) [Std.Commutative op] :
    IsSymmOp α α op
    Equations
    • =
    @[instance 100]
    instance isSymmOp_of_isSymm (α : Sort u) (op : ααProp) [IsSymm α op] :
    Equations
    • =
    @[deprecated]
    class IsLeftCancel (α : Sort u) (op : ααα) :
    • left_cancel : ∀ (a b c : α), op a b = op a cb = c
    Instances
      theorem IsLeftCancel.left_cancel {α : Sort u} {op : ααα} [self : IsLeftCancel α op] (a : α) (b : α) (c : α) :
      op a b = op a cb = c
      @[deprecated]
      class IsRightCancel (α : Sort u) (op : ααα) :
      • right_cancel : ∀ (a b c : α), op a b = op c ba = c
      Instances
        theorem IsRightCancel.right_cancel {α : Sort u} {op : ααα} [self : IsRightCancel α op] (a : α) (b : α) (c : α) :
        op a b = op c ba = c
        @[deprecated]
        class IsTotalPreorder (α : Sort u) (r : ααProp) extends IsTrans , IsTotal :

        IsTotalPreorder X r means that the binary relation r on X is total and a preorder.

          Instances
            @[instance 100]
            instance isTotalPreorder_isPreorder (α : Sort u) (r : ααProp) [s : IsTotalPreorder α r] :

            Every total pre-order is a pre-order.

            Equations
            • =
            @[deprecated]
            class IsIncompTrans (α : Sort u) (lt : ααProp) :

            IsIncompTrans X lt means that for lt a binary relation on X, the incomparable relation fun a b => ¬ lt a b ∧ ¬ lt b a is transitive.

            • incomp_trans : ∀ (a b c : α), ¬lt a b ¬lt b a¬lt b c ¬lt c b¬lt a c ¬lt c a
            Instances
              theorem IsIncompTrans.incomp_trans {α : Sort u} {lt : ααProp} [self : IsIncompTrans α lt] (a : α) (b : α) (c : α) :
              ¬lt a b ¬lt b a¬lt b c ¬lt c b¬lt a c ¬lt c a
              @[deprecated, instance 100]
              instance instIsIncompTransOfIsStrictWeakOrder (α : Sort u) (lt : ααProp) [IsStrictWeakOrder α lt] :
              Equations
              • =
              @[deprecated]
              theorem incomp_trans {α : Sort u} {r : ααProp} [IsIncompTrans α r] {a : α} {b : α} {c : α} :
              ¬r a b ¬r b a¬r b c ¬r c b¬r a c ¬r c a
              @[elab_without_expected_type, deprecated]
              theorem incomp_trans_of {α : Sort u} (r : ααProp) [IsIncompTrans α r] {a : α} {b : α} {c : α} :
              ¬r a b ¬r b a¬r b c ¬r c b¬r a c ¬r c a
              @[deprecated]
              def StrictWeakOrder.Equiv {α : Sort u} {r : ααProp} (a : α) (b : α) :
              Equations
              Instances For
                @[deprecated]
                theorem StrictWeakOrder.esymm {α : Sort u} {r : ααProp} {a : α} {b : α} :
                @[deprecated]
                theorem StrictWeakOrder.not_lt_of_equiv {α : Sort u} {r : ααProp} {a : α} {b : α} :
                @[deprecated]
                theorem StrictWeakOrder.not_lt_of_equiv' {α : Sort u} {r : ααProp} {a : α} {b : α} :
                @[deprecated]
                theorem StrictWeakOrder.erefl {α : Sort u} {r : ααProp} [IsStrictWeakOrder α r] (a : α) :
                @[deprecated]
                theorem StrictWeakOrder.etrans {α : Sort u} {r : ααProp} [IsStrictWeakOrder α r] {a : α} {b : α} {c : α} :
                @[deprecated]
                instance StrictWeakOrder.isEquiv {α : Sort u} {r : ααProp} [IsStrictWeakOrder α r] :
                IsEquiv α StrictWeakOrder.Equiv
                Equations
                • =

                The equivalence relation induced by lt

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[deprecated]
                  theorem isStrictWeakOrder_of_isTotalPreorder {α : Sort u} {le : ααProp} {lt : ααProp} [DecidableRel le] [IsTotalPreorder α le] (h : ∀ (a b : α), lt a b ¬le b a) :
                  @[deprecated]
                  instance instIsTotalPreorderLe {α : Type u_1} [LinearOrder α] :
                  IsTotalPreorder α fun (x1 x2 : α) => x1 x2
                  Equations
                  • =
                  @[deprecated]
                  instance isStrictWeakOrder_of_linearOrder {α : Type u_1} [LinearOrder α] :
                  IsStrictWeakOrder α fun (x1 x2 : α) => x1 < x2
                  Equations
                  • =
                  @[deprecated]
                  theorem lt_of_lt_of_incomp {α : Sort u} {lt : ααProp} [IsStrictWeakOrder α lt] [DecidableRel lt] {a : α} {b : α} {c : α} :
                  lt a b¬lt b c ¬lt c blt a c
                  @[deprecated]
                  theorem lt_of_incomp_of_lt {α : Sort u} {lt : ααProp} [IsStrictWeakOrder α lt] [DecidableRel lt] {a : α} {b : α} {c : α} :
                  ¬lt a b ¬lt b alt b clt a c
                  @[deprecated]
                  theorem eq_of_incomp {α : Sort u} {lt : ααProp} [IsTrichotomous α lt] {a : α} {b : α} :
                  ¬lt a b ¬lt b aa = b
                  @[deprecated]
                  theorem eq_of_eqv_lt {α : Sort u} {lt : ααProp} [IsTrichotomous α lt] {a : α} {b : α} :
                  @[deprecated]
                  theorem incomp_iff_eq {α : Sort u} {lt : ααProp} [IsTrichotomous α lt] [IsIrrefl α lt] (a : α) (b : α) :
                  ¬lt a b ¬lt b a a = b
                  @[deprecated]
                  theorem eqv_lt_iff_eq {α : Sort u} {lt : ααProp} [IsTrichotomous α lt] [IsIrrefl α lt] (a : α) (b : α) :