This module contains the verification of RUP-based clause adding for the default LRAT checker implementation.
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.contradiction_of_insertUnit_success
{n : Nat}
(assignments : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
(assignments_size : assignments.size = n)
(units : Array (Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)))
(foundContradiction : Bool)
(l : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
let insertUnit_res :=
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnit (units, assignments, foundContradiction) l;
(foundContradiction = true →
∃ (i : Std.Tactic.BVDecide.LRAT.Internal.PosFin n),
assignments[i.val] = Std.Tactic.BVDecide.LRAT.Internal.Assignment.both) →
insertUnit_res.snd.snd = true →
∃ (j : Std.Tactic.BVDecide.LRAT.Internal.PosFin n),
insertUnit_res.snd.fst[j.val] = Std.Tactic.BVDecide.LRAT.Internal.Assignment.both
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.contradiction_of_insertUnit_fold_success
{n : Nat}
(assignments : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
(assignments_size : assignments.size = n)
(units : Array (Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)))
(foundContradiction : Bool)
(l : Std.Sat.CNF.Clause (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
let insertUnit_fold_res :=
List.foldl Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnit (units, assignments, foundContradiction) l;
(foundContradiction = true →
∃ (i : Std.Tactic.BVDecide.LRAT.Internal.PosFin n),
assignments[i.val] = Std.Tactic.BVDecide.LRAT.Internal.Assignment.both) →
insertUnit_fold_res.snd.snd = true →
∃ (j : Std.Tactic.BVDecide.LRAT.Internal.PosFin n),
insertUnit_fold_res.snd.fst[j.val] = Std.Tactic.BVDecide.LRAT.Internal.Assignment.both
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.mem_insertUnit_units
{n : Nat}
(units : Array (Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)))
(assignments : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
(foundContradiction : Bool)
(l : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
let insertUnit_res :=
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnit (units, assignments, foundContradiction) l;
∀ (l' : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)),
l' ∈ insertUnit_res.fst.data → l' = l ∨ l' ∈ units.data
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.mem_insertUnit_fold_units
{n : Nat}
(units : Array (Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)))
(assignments : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
(foundContradiction : Bool)
(l : Std.Sat.CNF.Clause (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
let insertUnit_fold_res :=
List.foldl Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnit (units, assignments, foundContradiction) l;
∀ (l' : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)),
l' ∈ insertUnit_fold_res.fst.data → l' ∈ l ∨ l' ∈ units.data
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_insertRup
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(f_readyForRupAdd : f.ReadyForRupAdd)
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(p : Std.Tactic.BVDecide.LRAT.Internal.PosFin n → Bool)
(pf : Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p f)
:
(f.insertRupUnits c.negate).snd = true → Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p c
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.safe_insert_of_insertRup
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(f_readyForRupAdd : f.ReadyForRupAdd)
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
:
(f.insertRupUnits c.negate).snd = true →
Std.Tactic.BVDecide.LRAT.Internal.Limplies (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) f (f.insert c)
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.assignmentsInvariant_insertRupUnits_of_assignmentsInvariant
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(f_readyForRupAdd : f.ReadyForRupAdd)
(units : Std.Sat.CNF.Clause (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
(f.insertRupUnits units).fst.AssignmentsInvariant
def
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.ConfirmRupHintFoldEntailsMotive
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(_idx : Nat)
(acc : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment × Std.Sat.CNF.Clause (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) × Bool × Bool)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.unsat_of_encounteredBoth
{n : Nat}
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(assignment : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
:
c.reduce assignment = Std.Tactic.BVDecide.LRAT.Internal.ReduceResult.encounteredBoth →
Std.Tactic.BVDecide.LRAT.Internal.Unsatisfiable (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) assignment
def
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.ReducePostconditionInductionMotive
{n : Nat}
(c_arr : Array (Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)))
(assignment : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
(idx : Nat)
(res : Std.Tactic.BVDecide.LRAT.Internal.ReduceResult (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_fold_fn_preserves_induction_motive
{n : Nat}
{c_arr : Array (Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))}
{assignment : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment}
(idx : Fin c_arr.size)
(res : Std.Tactic.BVDecide.LRAT.Internal.ReduceResult (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
(ih : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.ReducePostconditionInductionMotive c_arr assignment (↑idx) res)
:
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.ReducePostconditionInductionMotive c_arr assignment (↑idx + 1)
(Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.reduce_fold_fn assignment res c_arr[idx])
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_postcondition
{n : Nat}
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(assignment : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
:
(c.reduce assignment = Std.Tactic.BVDecide.LRAT.Internal.ReduceResult.reducedToEmpty →
Std.Tactic.BVDecide.LRAT.Internal.Incompatible (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) c assignment) ∧ ∀ (l : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)),
c.reduce assignment = Std.Tactic.BVDecide.LRAT.Internal.ReduceResult.reducedToUnit l →
∀ (p : Std.Tactic.BVDecide.LRAT.Internal.PosFin n → Bool),
Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p assignment →
Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p c → Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p l
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.incompatible_of_reducedToEmpty
{n : Nat}
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(assignment : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
:
c.reduce assignment = Std.Tactic.BVDecide.LRAT.Internal.ReduceResult.reducedToEmpty →
Std.Tactic.BVDecide.LRAT.Internal.Incompatible (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) c assignment
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.limplies_of_reducedToUnit
{n : Nat}
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(assignment : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment)
(l : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n))
:
c.reduce assignment = Std.Tactic.BVDecide.LRAT.Internal.ReduceResult.reducedToUnit l →
∀ (p : Std.Tactic.BVDecide.LRAT.Internal.PosFin n → Bool),
Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p assignment →
Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p c → Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p l
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_motive
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(rupHints : Array Nat)
(idx : Fin rupHints.size)
(acc : Array Std.Tactic.BVDecide.LRAT.Internal.Assignment × Std.Sat.CNF.Clause (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) × Bool × Bool)
(ih : f.ConfirmRupHintFoldEntailsMotive (↑idx) acc)
:
f.ConfirmRupHintFoldEntailsMotive (↑idx + 1)
(Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint f.clauses acc rupHints[idx])
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_confirmRupHint_insertRup_fold
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(f_readyForRupAdd : f.ReadyForRupAdd)
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(rupHints : Array Nat)
(p : Std.Tactic.BVDecide.LRAT.Internal.PosFin n → Bool)
(pf : Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p f)
:
let fc := f.insertRupUnits c.negate;
let confirmRupHint_fold_res :=
Array.foldl (Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint fc.fst.clauses)
(fc.fst.assignments, [], false, false) rupHints;
confirmRupHint_fold_res.snd.snd.fst = true → Std.Tactic.BVDecide.LRAT.Internal.Entails.eval p c
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.safe_insert_of_performRupCheck_insertRup
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(f_readyForRupAdd : f.ReadyForRupAdd)
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(rupHints : Array Nat)
:
((f.insertRupUnits c.negate).fst.performRupCheck rupHints).snd.snd.fst = true →
Std.Tactic.BVDecide.LRAT.Internal.Limplies (Std.Tactic.BVDecide.LRAT.Internal.PosFin n) f (f.insert c)
theorem
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.rupAdd_sound
{n : Nat}
(f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(c : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n)
(rupHints : Array Nat)
(f' : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n)
(f_readyForRupAdd : f.ReadyForRupAdd)
(rupAddSuccess : f.performRupAdd c rupHints = (f', true))
: