Documentation

Mathlib.Algebra.Algebra.NonUnitalSubalgebra

Non-unital Subalgebras over Commutative Semirings #

In this file we define NonUnitalSubalgebras and the usual operations on them (map, comap).

TODO #

def NonUnitalSubalgebraClass.subtype {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) :
s →ₙₐ[R] A

Embedding of a non-unital subalgebra into the non-unital algebra.

Equations
Instances For
    @[simp]
    theorem NonUnitalSubalgebraClass.subtype_apply {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] {s : S} (x : s) :
    (subtype s) x = x
    @[simp]
    theorem NonUnitalSubalgebraClass.coe_subtype {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) :
    @[deprecated NonUnitalSubalgebraClass.coe_subtype (since := "2025-02-18")]
    theorem NonUnitalSubalgebraClass.coeSubtype {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) :

    Alias of NonUnitalSubalgebraClass.coe_subtype.

    A non-unital subalgebra is a sub(semi)ring that is also a submodule.

    Instances For
      Equations

      The actual NonUnitalSubalgebra obtained from an element of a type satisfying NonUnitalSubsemiringClass and SMulMemClass.

      Equations
      Instances For
        @[simp]
        theorem NonUnitalSubalgebra.ofClass_carrier {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SetLike S A] [NonUnitalSubsemiringClass S A] [SMulMemClass S R A] (s : S) :
        (ofClass s) = s
        @[instance 100]
        instance NonUnitalSubalgebra.instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallForallHSMul {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :
        CanLift (Set A) (NonUnitalSubalgebra R A) SetLike.coe fun (s : Set A) => 0 s (∀ {x y : A}, x sy sx + y s) (∀ {x y : A}, x sy sx * y s) ∀ (r : R) {x : A}, x sr x s
        theorem NonUnitalSubalgebra.ext {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S T : NonUnitalSubalgebra R A} (h : ∀ (x : A), x S x T) :
        S = T
        theorem NonUnitalSubalgebra.ext_iff {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S T : NonUnitalSubalgebra R A} :
        S = T ∀ (x : A), x S x T
        def NonUnitalSubalgebra.copy {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = S) :

        Copy of a non-unital subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

        Equations
        • S.copy s hs = { toNonUnitalSubsemiring := S.copy s hs, smul_mem' := }
        Instances For
          @[simp]
          theorem NonUnitalSubalgebra.coe_copy {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = S) :
          (S.copy s hs) = s
          theorem NonUnitalSubalgebra.copy_eq {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = S) :
          S.copy s hs = S

          A non-unital subalgebra over a ring is also a Subring.

          Equations
          Instances For

            NonUnitalSubalgebras inherit structure from their NonUnitalSubsemiring / Semiring coercions.

            The forgetful map from NonUnitalSubalgebra to Submodule as an OrderEmbedding

            Equations
            Instances For

              NonUnitalSubalgebras inherit structure from their Submodule coercions. #

              instance NonUnitalSubalgebra.instIsScalarTower' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
              IsScalarTower R' R S
              instance NonUnitalSubalgebra.instSMulCommClass' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] [SMulCommClass R' R A] :
              SMulCommClass R' R S
              theorem NonUnitalSubalgebra.coe_add {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} (x y : S) :
              ↑(x + y) = x + y
              theorem NonUnitalSubalgebra.coe_mul {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} (x y : S) :
              ↑(x * y) = x * y
              theorem NonUnitalSubalgebra.coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : NonUnitalSubalgebra R A} (x : S) :
              ↑(-x) = -x
              theorem NonUnitalSubalgebra.coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : NonUnitalSubalgebra R A} (x y : S) :
              ↑(x - y) = x - y
              @[simp]
              theorem NonUnitalSubalgebra.coe_smul {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} [SMul R' R] [SMul R' A] [IsScalarTower R' R A] (r : R') (x : S) :
              ↑(r x) = r x
              theorem NonUnitalSubalgebra.coe_eq_zero {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} {x : S} :
              x = 0 x = 0

              Linear equivalence between S : Submodule R A and S. Though these types are equal, we define it as a LinearEquiv to avoid type equalities.

              Equations
              Instances For

                Transport a non-unital subalgebra via an algebra homomorphism.

                Equations
                Instances For
                  theorem NonUnitalSubalgebra.map_mono {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :
                  S₁ S₂map f S₁ map f S₂
                  theorem NonUnitalSubalgebra.map_map {R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C] [Module R A] [Module R B] [Module R C] (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :
                  map g (map f S) = map (g.comp f) S
                  @[simp]
                  theorem NonUnitalSubalgebra.mem_map {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} {y : B} :
                  y map f S xS, f x = y
                  @[simp]
                  theorem NonUnitalSubalgebra.coe_map {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R A) (f : F) :
                  (map f S) = f '' S

                  Preimage of a non-unital subalgebra under an algebra homomorphism.

                  Equations
                  Instances For
                    theorem NonUnitalSubalgebra.map_le {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :
                    map f S U S comap f U
                    @[simp]
                    theorem NonUnitalSubalgebra.mem_comap {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R B) (f : F) (x : A) :
                    x comap f S f x S
                    @[simp]
                    theorem NonUnitalSubalgebra.coe_comap {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R B) (f : F) :
                    (comap f S) = f ⁻¹' S
                    def Submodule.toNonUnitalSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (h_mul : ∀ (x y : A), x py px * y p) :

                    A submodule closed under multiplication is a non-unital subalgebra.

                    Equations
                    Instances For
                      @[simp]
                      theorem Submodule.mem_toNonUnitalSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {p : Submodule R A} {h_mul : ∀ (x y : A), x py px * y p} {x : A} :
                      @[simp]
                      theorem Submodule.coe_toNonUnitalSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (h_mul : ∀ (x y : A), x py px * y p) :
                      (p.toNonUnitalSubalgebra h_mul) = p
                      theorem Submodule.toNonUnitalSubalgebra_mk {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (hmul : ∀ (x y : A), x py px * y p) :
                      p.toNonUnitalSubalgebra hmul = { carrier := p, add_mem' := , zero_mem' := , mul_mem' := , smul_mem' := }
                      @[simp]
                      theorem Submodule.toNonUnitalSubalgebra_toSubmodule {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (h_mul : ∀ (x y : A), x py px * y p) :
                      def NonUnitalAlgHom.range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ : F) :

                      Range of an NonUnitalAlgHom as a non-unital subalgebra.

                      Equations
                      Instances For
                        @[simp]
                        theorem NonUnitalAlgHom.mem_range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ : F) {y : B} :
                        y NonUnitalAlgHom.range φ ∃ (x : A), φ x = y
                        theorem NonUnitalAlgHom.mem_range_self {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ : F) (x : A) :
                        @[simp]
                        theorem NonUnitalAlgHom.coe_range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ : F) :
                        def NonUnitalAlgHom.codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ (x : A), f x S) :
                        A →ₙₐ[R] S

                        Restrict the codomain of a non-unital algebra homomorphism.

                        Equations
                        Instances For
                          @[simp]
                          theorem NonUnitalAlgHom.coe_codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ (x : A), f x S) (x : A) :
                          ((codRestrict f S hf) x) = f x
                          theorem NonUnitalAlgHom.injective_codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ (x : A), f x S) :
                          @[reducible, inline]

                          Restrict the codomain of an NonUnitalAlgHom f to f.range.

                          This is the bundled version of Set.rangeFactorization.

                          Equations
                          Instances For
                            def NonUnitalAlgHom.equalizer {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (ϕ ψ : F) :

                            The equalizer of two non-unital R-algebra homomorphisms

                            Equations
                            Instances For
                              @[simp]
                              theorem NonUnitalAlgHom.mem_equalizer {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ ψ : F) (x : A) :
                              x equalizer φ ψ φ x = ψ x

                              The range of a morphism of algebras is a fintype, if the domain is a fintype.

                              Note that this instance can cause a diamond with Subtype.fintype if B is also a fintype.

                              Equations

                              The minimal non-unital subalgebra that includes s.

                              Equations
                              Instances For
                                theorem NonUnitalAlgebra.subset_adjoin (R : Type u) {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} :
                                s (adjoin R s)

                                Galois insertion between adjoin and Subtype.val.

                                Equations
                                Instances For
                                  theorem NonUnitalAlgebra.adjoin_le {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s S) :
                                  adjoin R s S
                                  theorem NonUnitalAlgebra.adjoin_union {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (s t : Set A) :
                                  adjoin R (s t) = adjoin R sadjoin R t
                                  theorem NonUnitalAlgebra.adjoin_induction {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {p : (x : A) → x adjoin R sProp} (mem : ∀ (x : A) (hx : x s), p x ) (add : ∀ (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x hxp y hyp (x + y) ) (zero : p 0 ) (mul : ∀ (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x hxp y hyp (x * y) ) (smul : ∀ (r : R) (x : A) (hx : x adjoin R s), p x hxp (r x) ) {x : A} (hx : x adjoin R s) :
                                  p x hx

                                  If some predicate holds for all x ∈ (s : Set A) and this predicate is closed under the algebraMap, addition, multiplication and star operations, then it holds for a ∈ adjoin R s.

                                  theorem NonUnitalAlgebra.adjoin_induction₂ {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {p : (x y : A) → x adjoin R sy adjoin R sProp} (mem_mem : ∀ (x y : A) (hx : x s) (hy : y s), p x y ) (zero_left : ∀ (x : A) (hx : x adjoin R s), p 0 x hx) (zero_right : ∀ (x : A) (hx : x adjoin R s), p x 0 hx ) (add_left : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x z hx hzp y z hy hzp (x + y) z hz) (add_right : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x y hx hyp x z hx hzp x (y + z) hx ) (mul_left : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x z hx hzp y z hy hzp (x * y) z hz) (mul_right : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x y hx hyp x z hx hzp x (y * z) hx ) (smul_left : ∀ (r : R) (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x y hx hyp (r x) y hy) (smul_right : ∀ (r : R) (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x y hx hyp x (r y) hx ) {x y : A} (hx : x adjoin R s) (hy : y adjoin R s) :
                                  p x y hx hy
                                  @[simp]
                                  theorem NonUnitalAlgebra.mem_top {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {x : A} :
                                  @[simp]
                                  theorem NonUnitalAlgebra.mem_sup_left {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} {x : A} :
                                  x Sx ST
                                  theorem NonUnitalAlgebra.mem_sup_right {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} {x : A} :
                                  x Tx ST
                                  theorem NonUnitalAlgebra.mul_mem_sup {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x S) (hy : y T) :
                                  x * y ST
                                  @[simp]
                                  theorem NonUnitalAlgebra.coe_inf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (S T : NonUnitalSubalgebra R A) :
                                  (ST) = S T
                                  @[simp]
                                  theorem NonUnitalAlgebra.mem_inf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} {x : A} :
                                  x ST x S x T
                                  @[simp]
                                  theorem NonUnitalAlgebra.coe_sInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (S : Set (NonUnitalSubalgebra R A)) :
                                  (sInf S) = sS, s
                                  theorem NonUnitalAlgebra.mem_sInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S : Set (NonUnitalSubalgebra R A)} {x : A} :
                                  x sInf S pS, x p
                                  @[simp]
                                  theorem NonUnitalAlgebra.coe_iInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} {S : ιNonUnitalSubalgebra R A} :
                                  (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
                                  theorem NonUnitalAlgebra.mem_iInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} {S : ιNonUnitalSubalgebra R A} {x : A} :
                                  x ⨅ (i : ι), S i ∀ (i : ι), x S i
                                  theorem NonUnitalAlgebra.map_iInf {F : Type u_1} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} [Nonempty ι] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (hf : Function.Injective f) (S : ιNonUnitalSubalgebra R A) :
                                  NonUnitalSubalgebra.map f (⨅ (i : ι), S i) = ⨅ (i : ι), NonUnitalSubalgebra.map f (S i)
                                  @[simp]
                                  theorem NonUnitalAlgebra.iInf_toSubmodule {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} (S : ιNonUnitalSubalgebra R A) :
                                  (⨅ (i : ι), S i).toSubmodule = ⨅ (i : ι), (S i).toSubmodule
                                  theorem NonUnitalAlgebra.mem_bot {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {x : A} :
                                  x x = 0
                                  @[simp]
                                  theorem NonUnitalAlgebra.eq_top_iff {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S : NonUnitalSubalgebra R A} :
                                  S = ∀ (x : A), x S
                                  @[deprecated NonUnitalAlgebra.range_eq_top (since := "2024-11-11")]

                                  Alias of NonUnitalAlgebra.range_eq_top.

                                  The product of two non-unital subalgebras is a non-unital subalgebra.

                                  Equations
                                  • S.prod S₁ = { carrier := S ×ˢ S₁, add_mem' := , zero_mem' := , mul_mem' := , smul_mem' := }
                                  Instances For
                                    @[simp]
                                    theorem NonUnitalSubalgebra.coe_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) [NonUnitalNonAssocSemiring B] [Module R B] (S₁ : NonUnitalSubalgebra R B) :
                                    (S.prod S₁) = S ×ˢ S₁
                                    @[simp]
                                    theorem NonUnitalSubalgebra.mem_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :
                                    x S.prod S₁ x.1 S x.2 S₁
                                    theorem NonUnitalSubalgebra.prod_mono {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :
                                    S TS₁ T₁S.prod S₁ T.prod T₁
                                    @[simp]
                                    theorem NonUnitalSubalgebra.prod_inf_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :
                                    S.prod S₁T.prod T₁ = (ST).prod (S₁T₁)
                                    def NonUnitalSubalgebra.inclusion {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) :
                                    S →ₙₐ[R] T

                                    The map S → T when S is a non-unital subalgebra contained in the non-unital subalgebra T.

                                    This is the non-unital subalgebra version of Submodule.inclusion, or Subring.inclusion

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem NonUnitalSubalgebra.inclusion_mk {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) (x : A) (hx : x S) :
                                      (inclusion h) x, hx = x,
                                      theorem NonUnitalSubalgebra.inclusion_right {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) (x : T) (m : x S) :
                                      (inclusion h) x, m = x
                                      @[simp]
                                      theorem NonUnitalSubalgebra.inclusion_inclusion {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T U : NonUnitalSubalgebra R A} (hst : S T) (htu : T U) (x : S) :
                                      (inclusion htu) ((inclusion hst) x) = (inclusion ) x
                                      @[simp]
                                      theorem NonUnitalSubalgebra.coe_inclusion {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) (s : S) :
                                      ((inclusion h) s) = s
                                      theorem NonUnitalSubalgebra.coe_iSup_of_directed {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {S : ιNonUnitalSubalgebra R A} (dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) S) :
                                      (iSup S) = ⋃ (i : ι), (S i)
                                      noncomputable def NonUnitalSubalgebra.iSupLift {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] (K : ιNonUnitalSubalgebra R A) (dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K) (f : (i : ι) → (K i) →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)) (T : NonUnitalSubalgebra R A) (hT : T = iSup K) :
                                      T →ₙₐ[R] B

                                      Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining it on each non-unital subalgebra, and proving that it agrees on the intersection of non-unital subalgebras.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[simp]
                                        theorem NonUnitalSubalgebra.iSupLift_inclusion {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (h : K i T) :
                                        (iSupLift K dir f hf T hT) ((inclusion h) x) = (f i) x
                                        @[simp]
                                        theorem NonUnitalSubalgebra.iSupLift_comp_inclusion {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (h : K i T) :
                                        (iSupLift K dir f hf T hT).comp (inclusion h) = f i
                                        @[simp]
                                        theorem NonUnitalSubalgebra.iSupLift_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (hx : x T) :
                                        (iSupLift K dir f hf T hT) x, hx = (f i) x
                                        theorem NonUnitalSubalgebra.iSupLift_of_mem {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (x : T) (hx : x K i) :
                                        (iSupLift K dir f hf T hT) x = (f i) x, hx
                                        theorem Set.smul_mem_center {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (r : R) {a : A} (ha : a center A) :
                                        r a center A

                                        The center of a non-unital algebra is the set of elements which commute with every element. They form a non-unital subalgebra.

                                        Equations
                                        Instances For
                                          theorem NonUnitalSubalgebra.mem_center_iff {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a : A} :
                                          a center R A ∀ (b : A), b * a = a * b
                                          @[simp]
                                          theorem Set.smul_mem_centralizer {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} (r : R) {a : A} (ha : a s.centralizer) :

                                          The centralizer of a set as a non-unital subalgebra.

                                          Equations
                                          Instances For
                                            @[simp]
                                            theorem NonUnitalSubalgebra.coe_centralizer (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (s : Set A) :
                                            theorem NonUnitalSubalgebra.mem_centralizer_iff (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {z : A} :
                                            z centralizer R s gs, g * z = z * g
                                            theorem NonUnitalSubalgebra.centralizer_le (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (s t : Set A) (h : s t) :
                                            theorem NonUnitalAlgebra.commute_of_mem_adjoin_of_forall_mem_commute {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a b : A} {s : Set A} (hb : b adjoin R s) (h : bs, Commute a b) :
                                            theorem NonUnitalAlgebra.commute_of_mem_adjoin_singleton_of_commute {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a b c : A} (hc : c adjoin R {b}) (h : Commute a b) :
                                            theorem NonUnitalAlgebra.commute_of_mem_adjoin_self {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a b : A} (hb : b adjoin R {a}) :
                                            @[reducible, inline]
                                            abbrev NonUnitalAlgebra.adjoinNonUnitalCommSemiringOfComm (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} (hcomm : as, bs, a * b = b * a) :

                                            If all elements of s : Set A commute pairwise, then adjoin R s is a non-unital commutative semiring.

                                            See note [reducible non-instances].

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev NonUnitalAlgebra.adjoinNonUnitalCommRingOfComm (R : Type u_3) {A : Type u_4} [CommRing R] [NonUnitalRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} (hcomm : as, bs, a * b = b * a) :

                                              If all elements of s : Set A commute pairwise, then adjoin R s is a non-unital commutative ring.

                                              See note [reducible non-instances].

                                              Equations
                                              Instances For

                                                A non-unital subsemiring is a non-unital -subalgebra.

                                                Equations
                                                Instances For

                                                  A non-unital subring is a non-unital -subalgebra.

                                                  Equations
                                                  Instances For