theorem
cLpNorm_cconv_le_cLpNorm_cdconv
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
[MeasurableSpace G]
[DiscreteMeasurableSpace G]
{n : ℕ}
(hn₀ : n ≠ 0)
(hn : Even n)
(f : G → ℂ)
:
theorem
dLpNorm_conv_le_dLpNorm_dconv
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
[MeasurableSpace G]
[DiscreteMeasurableSpace G]
{n : ℕ}
(hn₀ : n ≠ 0)
(hn : Even n)
(f : G → ℂ)
:
theorem
cLpNorm_cconv_le_cLpNorm_cdconv'
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
[MeasurableSpace G]
[DiscreteMeasurableSpace G]
{n : ℕ}
(hn₀ : n ≠ 0)
(hn : Even n)
(f : G → ℝ)
:
theorem
dLpNorm_conv_le_dLpNorm_dconv'
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
[MeasurableSpace G]
[DiscreteMeasurableSpace G]
{n : ℕ}
(hn₀ : n ≠ 0)
(hn : Even n)
(f : G → ℝ)
: