Interaction of big operators with indicator functions #
Consider a product of g i (f i)
over a finset. Suppose g
is a function such as
n ↦ (· ^ n)
, which maps a second argument of 1
to 1
. Then if f
is replaced by the
corresponding multiplicative indicator function, the finset may be replaced by a possibly larger
finset without changing the value of the product.
Consider a sum of g i (f i)
over a finset. Suppose g
is a function such as
n ↦ (n • ·)
, which maps a second argument of 0
to 0
(or a weighted sum of f i * h i
or
f i • h i
, where f
gives the weights that are multiplied by some other function h
). Then if
f
is replaced by the corresponding indicator function, the finset may be replaced by a possibly
larger finset without changing the value of the sum.
Taking the product of an indicator function over a possibly larger finset is the same as taking the original function over the original finset.
Summing an indicator function over a possibly larger Finset
is the same as summing
the original function over the original finset.