Documentation

Mathlib.Algebra.BigOperators.Group.Finset.Lemmas

Miscellaneous lemmas on big operators #

The lemmas in this file have been moved out of Mathlib.Algebra.BigOperators.Group.Finset.Basic to reduce its imports.

theorem MonoidHom.coe_finset_prod {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulOneClass β] [CommMonoid γ] (f : αβ →* γ) (s : Finset α) :
(∏ xs, f x) = xs, (f x)
theorem AddMonoidHom.coe_finset_sum {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddZeroClass β] [AddCommMonoid γ] (f : αβ →+ γ) (s : Finset α) :
(∑ xs, f x) = xs, (f x)
@[simp]
theorem MonoidHom.finset_prod_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulOneClass β] [CommMonoid γ] (f : αβ →* γ) (s : Finset α) (b : β) :
(∏ xs, f x) b = xs, (f x) b

See also Finset.prod_apply, with the same conclusion but with the weaker hypothesis f : α → β → γ

@[simp]
theorem AddMonoidHom.finset_sum_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddZeroClass β] [AddCommMonoid γ] (f : αβ →+ γ) (s : Finset α) (b : β) :
(∑ xs, f x) b = xs, (f x) b

See also Finset.sum_apply, with the same conclusion but with the weaker hypothesis f : α → β → γ

theorem Finset.mulSupport_prod {ι : Type u_1} {α : Type u_2} {β : Type u_3} [CommMonoid β] (s : Finset ι) (f : ιαβ) :
(Function.mulSupport fun (x : α) => is, f i x) is, Function.mulSupport (f i)
theorem Finset.support_sum {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommMonoid β] (s : Finset ι) (f : ιαβ) :
(Function.support fun (x : α) => is, f i x) is, Function.support (f i)
theorem Finset.isSquare_prod {ι : Type u_1} {α : Type u_2} {s : Finset ι} [CommMonoid α] (f : ια) (h : cs, IsSquare (f c)) :
IsSquare (∏ is, f i)
theorem Finset.even_sum {ι : Type u_1} {α : Type u_2} {s : Finset ι} [AddCommMonoid α] (f : ια) (h : cs, Even (f c)) :
Even (∑ is, f i)