Miscellaneous lemmas on big operators #
The lemmas in this file have been moved out of Mathlib.Algebra.BigOperators.Group.Finset.Basic
to reduce its imports.
theorem
MonoidHom.coe_finset_prod
{α : Type u_2}
{β : Type u_3}
{γ : Type u_4}
[MulOneClass β]
[CommMonoid γ]
(f : α → β →* γ)
(s : Finset α)
:
theorem
AddMonoidHom.coe_finset_sum
{α : Type u_2}
{β : Type u_3}
{γ : Type u_4}
[AddZeroClass β]
[AddCommMonoid γ]
(f : α → β →+ γ)
(s : Finset α)
:
@[simp]
theorem
MonoidHom.finset_prod_apply
{α : Type u_2}
{β : Type u_3}
{γ : Type u_4}
[MulOneClass β]
[CommMonoid γ]
(f : α → β →* γ)
(s : Finset α)
(b : β)
:
See also Finset.prod_apply
, with the same conclusion but with the weaker hypothesis
f : α → β → γ
@[simp]
theorem
AddMonoidHom.finset_sum_apply
{α : Type u_2}
{β : Type u_3}
{γ : Type u_4}
[AddZeroClass β]
[AddCommMonoid γ]
(f : α → β →+ γ)
(s : Finset α)
(b : β)
:
See also Finset.sum_apply
, with the same conclusion but with the weaker hypothesis
f : α → β → γ
theorem
Finset.mulSupport_prod
{ι : Type u_1}
{α : Type u_2}
{β : Type u_3}
[CommMonoid β]
(s : Finset ι)
(f : ι → α → β)
:
theorem
Finset.support_sum
{ι : Type u_1}
{α : Type u_2}
{β : Type u_3}
[AddCommMonoid β]
(s : Finset ι)
(f : ι → α → β)
:
theorem
Finset.isSquare_prod
{ι : Type u_1}
{α : Type u_2}
{s : Finset ι}
[CommMonoid α]
(f : ι → α)
(h : ∀ c ∈ s, IsSquare (f c))
:
IsSquare (∏ i ∈ s, f i)
theorem
Finset.even_sum
{ι : Type u_1}
{α : Type u_2}
{s : Finset ι}
[AddCommMonoid α]
(f : ι → α)
(h : ∀ c ∈ s, Even (f c))
:
Even (∑ i ∈ s, f i)