The Frobenius endomorphism #
Tags #
Frobenius endomorphism
Implementation notes #
The definitions of frobenius
and iterateFrobenius
ring homomorphisms are in
Mathlib.Algebra.CharP.Lemmas
as they are needed for some results that in turn are used in files
forbidding to import algebra-related definitions (see Mathlib.Algebra.CharP.Two.lean
).
@[simp]
@[simp]
theorem
iterateFrobenius_add_apply
(R : Type u_1)
[CommSemiring R]
(p m n : ℕ)
[ExpChar R p]
(x : R)
:
theorem
iterateFrobenius_mul_apply
(R : Type u_1)
[CommSemiring R]
(p m n : ℕ)
[ExpChar R p]
(x : R)
:
theorem
MonoidHom.map_frobenius
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommSemiring S]
(f : R →* S)
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
(x : R)
:
theorem
RingHom.map_frobenius
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommSemiring S]
(g : R →+* S)
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
(x : R)
:
theorem
MonoidHom.map_iterateFrobenius
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommSemiring S]
(f : R →* S)
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
(x : R)
(n : ℕ)
:
theorem
RingHom.map_iterateFrobenius
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommSemiring S]
(g : R →+* S)
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
(x : R)
(n : ℕ)
:
theorem
RingHom.frobenius_comm
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommSemiring S]
(g : R →+* S)
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
:
The Frobenius endomorphism commutes with any ring homomorphism.
theorem
RingHom.iterateFrobenius_comm
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommSemiring S]
(g : R →+* S)
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
(n : ℕ)
:
The iterated Frobenius endomorphism commutes with any ring homomorphism.
def
LinearMap.frobenius
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
[Algebra R S]
:
The frobenius map of an algebra as a frobenius-semilinear map.
Equations
- LinearMap.frobenius R S p = { toFun := (↑↑(frobenius S p)).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
def
LinearMap.iterateFrobenius
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
(p n : ℕ)
[ExpChar R p]
[ExpChar S p]
[Algebra R S]
:
The iterated frobenius map of an algebra as a iterated-frobenius-semilinear map.
Equations
- LinearMap.iterateFrobenius R S p n = { toFun := (↑↑(iterateFrobenius S p n)).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
LinearMap.frobenius_def
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
[Algebra R S]
(x : S)
:
theorem
LinearMap.iterateFrobenius_def
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
(p : ℕ)
[ExpChar R p]
[ExpChar S p]
[Algebra R S]
(n : ℕ)
(x : S)
: