Translation operator #
This file defines the translation of a function from a group by an element of that group.
Notation #
τ a f is notation for translate a f.
See also #
Generally, translation is the same as acting on the domain by subtraction. This setting is
abstracted by DomAddAct in such a way that τ a f = DomAddAct.mk (-a) +ᵥ f (see
translate_eq_domAddActMk_vadd). Using DomAddAct is irritating in applications because of this
negation appearing inside DomAddAct.mk. Although mathematically equivalent, the pen and paper
convention is that translating is an action by subtraction, not by addition.
Translation of a function in a group by an element of that group.
τ a f is defined as x ↦ f (x - a).
Equations
- translate.termτ = Lean.ParserDescr.node `translate.termτ 1024 (Lean.ParserDescr.symbol "τ ")
Instances For
@[simp]
theorem
translate_apply
{α : Type u_2}
{G : Type u_5}
[AddCommGroup G]
(a : G)
(f : G → α)
(x : G)
:
@[simp]
See translate_add
theorem
translate_eq_domAddActMk_vadd
{α : Type u_2}
{G : Type u_5}
[AddCommGroup G]
(a : G)
(f : G → α)
:
@[simp]
theorem
translate_sum_right
{ι : Type u_1}
{M : Type u_4}
{G : Type u_5}
[AddCommGroup G]
[AddCommMonoid M]
(a : G)
(f : ι → G → M)
(s : Finset ι)
:
theorem
sum_translate
{M : Type u_4}
{G : Type u_5}
[AddCommGroup G]
[AddCommMonoid M]
[Fintype G]
(a : G)
(f : G → M)
:
@[simp]
theorem
support_translate
{G : Type u_5}
{H : Type u_6}
[AddCommGroup G]
[AddCommGroup H]
(a : G)
(f : G → H)
:
theorem
translate_prod_right
{ι : Type u_1}
{M : Type u_4}
{G : Type u_5}
[AddCommGroup G]
[CommMonoid M]
(a : G)
(f : ι → G → M)
(s : Finset ι)
: