Lemmas about commuting elements in a MonoidWithZero or a GroupWithZero. #
theorem
Commute.ringInverse_ringInverse
{M₀ : Type u_1}
[MonoidWithZero M₀]
{a b : M₀}
(h : Commute a b)
:
Commute (Ring.inverse a) (Ring.inverse b)
@[deprecated Commute.ringInverse_ringInverse (since := "2025-04-22")]
theorem
Commute.ring_inverse_ring_inverse
{M₀ : Type u_1}
[MonoidWithZero M₀]
{a b : M₀}
(h : Commute a b)
:
Commute (Ring.inverse a) (Ring.inverse b)
Alias of Commute.ringInverse_ringInverse.
@[simp]
@[simp]
@[simp]
theorem
Commute.div_right
{G₀ : Type u_2}
[GroupWithZero G₀]
{a b c : G₀}
(hab : Commute a b)
(hac : Commute a c)
:
@[simp]
theorem
Commute.div_left
{G₀ : Type u_2}
[GroupWithZero G₀]
{a b c : G₀}
(hac : Commute a c)
(hbc : Commute b c)
: