Documentation

Mathlib.Algebra.Module.NatInt

Modules over and #

This file concerns modules where the scalars are the natural numbers or the integers.

Main definitions #

Main results #

Tags #

semimodule, module, vector space

Equations
@[reducible, inline]

An AddCommMonoid that is a Module over a Ring carries a natural AddCommGroup structure. See note [reducible non-instances].

Equations
Instances For
    theorem Nat.cast_smul_eq_nsmul (R : Type u_1) {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (n : ) (b : M) :
    n b = n b

    nsmul is equal to any other module structure via a cast.

    theorem ofNat_smul_eq_nsmul (R : Type u_1) {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (n : ) [n.AtLeastTwo] (b : M) :

    nsmul is equal to any other module structure via a cast.

    @[deprecated Nat.cast_smul_eq_nsmul]
    theorem nsmul_eq_smul_cast (R : Type u_1) {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (n : ) (b : M) :
    n b = n b

    nsmul is equal to any other module structure via a cast.

    theorem nat_smul_eq_nsmul {M : Type u_3} [AddCommMonoid M] (h : Module M) (n : ) (x : M) :
    SMul.smul n x = n x

    Convert back any exotic -smul to the canonical instance. This should not be needed since in mathlib all AddCommMonoids should normally have exactly one -module structure by design.

    All -module structures are equal. Not an instance since in mathlib all AddCommMonoid should normally have exactly one -module structure by design.

    Equations
    • AddCommMonoid.uniqueNatModule = { default := inferInstance, uniq := }
    Instances For
      instance AddCommMonoid.nat_isScalarTower {R : Type u_1} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] :
      Equations
      • =
      theorem map_natCast_smul {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] {F : Type u_5} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (R : Type u_6) (S : Type u_7) [Semiring R] [Semiring S] [Module R M] [Module S M₂] (x : ) (a : M) :
      f (x a) = x f a
      theorem Nat.smul_one_eq_cast {R : Type u_5} [NonAssocSemiring R] (m : ) :
      m 1 = m
      theorem Int.smul_one_eq_cast {R : Type u_5} [NonAssocRing R] (m : ) :
      m 1 = m
      @[deprecated Nat.smul_one_eq_cast]
      theorem Nat.smul_one_eq_coe {R : Type u_5} [NonAssocSemiring R] (m : ) :
      m 1 = m

      Alias of Nat.smul_one_eq_cast.

      @[deprecated Int.smul_one_eq_cast]
      theorem Int.smul_one_eq_coe {R : Type u_5} [NonAssocRing R] (m : ) :
      m 1 = m

      Alias of Int.smul_one_eq_cast.