Instances on PUnit #
This file collects facts about module structures on the one-element type
Equations
- PUnit.smul = { smul := fun (x : R) (x : PUnit.{?u.2 + 1}) => PUnit.unit }
Equations
- PUnit.vadd = { vadd := fun (x : R) (x : PUnit.{?u.2 + 1}) => PUnit.unit }
Equations
- PUnit.smulWithZero = { toSMul := PUnit.smul, smul_zero := ⋯, zero_smul := ⋯ }
Equations
- PUnit.mulAction = { toSMul := PUnit.smul, one_smul := ⋯, mul_smul := ⋯ }
Equations
- PUnit.distribMulAction = { toMulAction := PUnit.mulAction, smul_zero := ⋯, smul_add := ⋯ }
Equations
- PUnit.mulDistribMulAction = { toMulAction := PUnit.mulAction, smul_mul := ⋯, smul_one := ⋯ }
Equations
- PUnit.mulSemiringAction = { toDistribMulAction := PUnit.distribMulAction, smul_one := ⋯, smul_mul := ⋯ }
Equations
- PUnit.mulActionWithZero = { toMulAction := PUnit.mulAction, smul_zero := ⋯, zero_smul := ⋯ }
Equations
- PUnit.module = { toDistribMulAction := PUnit.distribMulAction, add_smul := ⋯, zero_smul := ⋯ }
Equations
- PUnit.instSMul = { smul := fun (x : PUnit.{?u.2 + 1}) (x : R) => x }
Equations
- PUnit.instVAdd = { vadd := fun (x : PUnit.{?u.2 + 1}) (x : R) => x }
@[simp]
The one-element type acts trivially on every element.
Equations
- PUnit.instMulAction = { toSMul := inferInstanceAs (SMul PUnit.{?u.7 + 1} R), one_smul := ⋯, mul_smul := ⋯ }
Equations
- PUnit.instSMulZeroClass = { toSMul := inferInstanceAs (SMul PUnit.{?u.11 + 1} R), smul_zero := ⋯ }
Equations
- PUnit.instDistribMulAction = { toMulAction := inferInstanceAs (MulAction PUnit.{?u.11 + 1} R), smul_zero := ⋯, smul_add := ⋯ }