Inverse and multiplication as order isomorphisms in ordered groups #
x ↦ x⁻¹ as an order-reversing equivalence.
Equations
- OrderIso.inv α = { toEquiv := Equiv.trans (Equiv.inv α) OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
x ↦ -x as an order-reversing equivalence.
Equations
- OrderIso.neg α = { toEquiv := Equiv.trans (Equiv.neg α) OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.neg_symm_apply
(α : Type u)
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
(a✝ : αᵒᵈ)
:
@[simp]
theorem
OrderIso.inv_apply
(α : Type u)
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
(a✝ : α)
:
@[simp]
theorem
OrderIso.inv_symm_apply
(α : Type u)
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
(a✝ : αᵒᵈ)
:
@[simp]
theorem
OrderIso.neg_apply
(α : Type u)
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
(a✝ : α)
:
theorem
inv_le_of_inv_le'
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
{a b : α}
:
Alias of the forward direction of inv_le'.
theorem
neg_le_of_neg_le
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
{a b : α}
:
x ↦ a / x as an order-reversing equivalence.
Equations
- OrderIso.divLeft a = { toEquiv := (Equiv.divLeft a).trans OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
x ↦ a - x as an order-reversing equivalence.
Equations
- OrderIso.subLeft a = { toEquiv := (Equiv.subLeft a).trans OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.divLeft_apply
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
(a a✝ : α)
:
@[simp]
theorem
OrderIso.subLeft_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
(a a✝ : α)
:
@[simp]
theorem
OrderIso.subLeft_symm_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
(a✝ : αᵒᵈ)
:
@[simp]
theorem
OrderIso.divLeft_symm_apply
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
(a✝ : αᵒᵈ)
:
Alias of the forward direction of le_inv'.
theorem
le_neg_of_le_neg
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
{a b : α}
:
Equiv.mulRight as an OrderIso. See also OrderEmbedding.mulRight.
Equations
- OrderIso.mulRight a = { toEquiv := Equiv.mulRight a, map_rel_iff' := ⋯ }
Instances For
Equiv.addRight as an OrderIso. See also OrderEmbedding.addRight.
Equations
- OrderIso.addRight a = { toEquiv := Equiv.addRight a, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
x ↦ x / a as an order isomorphism.
Equations
- OrderIso.divRight a = { toEquiv := Equiv.divRight a, map_rel_iff' := ⋯ }
Instances For
x ↦ x - a as an order isomorphism.
Equations
- OrderIso.subRight a = { toEquiv := Equiv.subRight a, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
Equiv.mulLeft as an OrderIso. See also OrderEmbedding.mulLeft.
Equations
- OrderIso.mulLeft a = { toEquiv := Equiv.mulLeft a, map_rel_iff' := ⋯ }
Instances For
Equiv.addLeft as an OrderIso. See also OrderEmbedding.addLeft.
Equations
- OrderIso.addLeft a = { toEquiv := Equiv.addLeft a, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]