Documentation

Mathlib.Algebra.Polynomial.AlgebraMap

Theory of univariate polynomials #

We show that A[X] is an R-algebra when A is an R-algebra. We promote eval₂ to an algebra hom in aeval.

instance Polynomial.algebraOfAlgebra {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] :

Note that this instance also provides Algebra R R[X].

Equations
@[simp]
theorem Polynomial.algebraMap_apply {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (r : R) :
(algebraMap R (Polynomial A)) r = Polynomial.C ((algebraMap R A) r)
@[simp]
theorem Polynomial.toFinsupp_algebraMap {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (r : R) :
((algebraMap R (Polynomial A)) r).toFinsupp = (algebraMap R (AddMonoidAlgebra A )) r
theorem Polynomial.ofFinsupp_algebraMap {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (r : R) :
{ toFinsupp := (algebraMap R (AddMonoidAlgebra A )) r } = (algebraMap R (Polynomial A)) r
theorem Polynomial.C_eq_algebraMap {R : Type u} [CommSemiring R] (r : R) :
Polynomial.C r = (algebraMap R (Polynomial R)) r

When we have [CommSemiring R], the function C is the same as algebraMap R R[X].

(But note that C is defined when R is not necessarily commutative, in which case algebraMap is not available.)

@[simp]
theorem Polynomial.algebraMap_eq {R : Type u} [CommSemiring R] :
algebraMap R (Polynomial R) = Polynomial.C

Polynomial.C as an AlgHom.

Equations
  • Polynomial.CAlgHom = { toRingHom := Polynomial.C, commutes' := }
Instances For
    @[simp]
    theorem Polynomial.CAlgHom_apply {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (a✝ : A) :
    Polynomial.CAlgHom a✝ = Polynomial.C a✝
    theorem Polynomial.algHom_ext' {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f g : Polynomial A →ₐ[R] B} (hC : f.comp Polynomial.CAlgHom = g.comp Polynomial.CAlgHom) (hX : f Polynomial.X = g Polynomial.X) :
    f = g

    Extensionality lemma for algebra maps out of A'[X] over a smaller base ring than A'

    Algebra isomorphism between R[X] and R[ℕ]. This is just an implementation detail, but it can be useful to transfer results from Finsupp to polynomials.

    Equations
    Instances For
      @[simp]
      theorem Polynomial.toFinsuppIsoAlg_symm_apply_toFinsupp (R : Type u) [CommSemiring R] (toFinsupp : AddMonoidAlgebra R ) :
      ((Polynomial.toFinsuppIsoAlg R).symm toFinsupp).toFinsupp = toFinsupp
      @[simp]
      theorem Polynomial.toFinsuppIsoAlg_apply (R : Type u) [CommSemiring R] (self : Polynomial R) :
      (Polynomial.toFinsuppIsoAlg R) self = self.toFinsupp
      @[simp]
      theorem Polynomial.algHom_eval₂_algebraMap {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (p : Polynomial R) (f : A →ₐ[R] B) (a : A) :
      @[simp]
      theorem Polynomial.eval₂_algebraMap_X {R : Type u_3} {A : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] (p : Polynomial R) (f : Polynomial R →ₐ[R] A) :
      Polynomial.eval₂ (algebraMap R A) (f Polynomial.X) p = f p
      @[simp]
      theorem Polynomial.ringHom_eval₂_intCastRingHom {R : Type u_3} {S : Type u_4} [Ring R] [Ring S] (p : Polynomial ) (f : R →+* S) (r : R) :
      @[deprecated Polynomial.ringHom_eval₂_intCastRingHom]
      theorem Polynomial.ringHom_eval₂_cast_int_ringHom {R : Type u_3} {S : Type u_4} [Ring R] [Ring S] (p : Polynomial ) (f : R →+* S) (r : R) :

      Alias of Polynomial.ringHom_eval₂_intCastRingHom.

      @[simp]
      theorem Polynomial.eval₂_intCastRingHom_X {R : Type u_3} [Ring R] (p : Polynomial ) (f : Polynomial →+* R) :
      Polynomial.eval₂ (Int.castRingHom R) (f Polynomial.X) p = f p
      @[deprecated Polynomial.eval₂_intCastRingHom_X]
      theorem Polynomial.eval₂_int_castRingHom_X {R : Type u_3} [Ring R] (p : Polynomial ) (f : Polynomial →+* R) :
      Polynomial.eval₂ (Int.castRingHom R) (f Polynomial.X) p = f p

      Alias of Polynomial.eval₂_intCastRingHom_X.

      def Polynomial.eval₂AlgHom' {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (b : B) (hf : ∀ (a : A), Commute (f a) b) :

      Polynomial.eval₂ as an AlgHom for noncommutative algebras.

      This is Polynomial.eval₂RingHom' for AlgHoms.

      Equations
      Instances For
        @[simp]
        theorem Polynomial.eval₂AlgHom'_apply {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (b : B) (hf : ∀ (a : A), Commute (f a) b) (p : Polynomial A) :
        def Polynomial.mapAlgHom {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :

        Polynomial.map as an AlgHom for noncommutative algebras.

        This is the algebra version of Polynomial.mapRingHom.

        Equations
        Instances For
          @[simp]
          theorem Polynomial.coe_mapAlgHom {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
          @[simp]
          theorem Polynomial.mapAlgHom_coe_ringHom {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
          @[simp]
          theorem Polynomial.mapAlgHom_comp {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (C : Type z) [Semiring C] [Algebra R C] (f : B →ₐ[R] C) (g : A →ₐ[R] B) :
          theorem Polynomial.mapAlgHom_eq_eval₂AlgHom'_CAlgHom {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
          Polynomial.mapAlgHom f = Polynomial.eval₂AlgHom' (Polynomial.CAlgHom.comp f) Polynomial.X
          def Polynomial.mapAlgEquiv {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A ≃ₐ[R] B) :

          If A and B are isomorphic as R-algebras, then so are their polynomial rings

          Equations
          Instances For
            @[simp]
            theorem Polynomial.coe_mapAlgEquiv {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A ≃ₐ[R] B) :
            @[simp]
            theorem Polynomial.mapAlgEquiv_id {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] :
            Polynomial.mapAlgEquiv AlgEquiv.refl = AlgEquiv.refl
            @[simp]
            theorem Polynomial.mapAlgEquiv_coe_ringHom {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A ≃ₐ[R] B) :
            @[simp]
            theorem Polynomial.mapAlgEquiv_comp {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (C : Type z) [Semiring C] [Algebra R C] (f : A ≃ₐ[R] B) (g : B ≃ₐ[R] C) :
            def Polynomial.aeval {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) :

            Given a valuation x of the variable in an R-algebra A, aeval R A x is the unique R-algebra homomorphism from R[X] to A sending X to x.

            This is a stronger variant of the linear map Polynomial.leval.

            Equations
            Instances For
              theorem Polynomial.algHom_ext {R : Type u} {B : Type u_2} [CommSemiring R] [Semiring B] [Algebra R B] {f g : Polynomial R →ₐ[R] B} (hX : f Polynomial.X = g Polynomial.X) :
              f = g
              theorem Polynomial.aeval_def {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) (p : Polynomial R) :
              theorem Polynomial.aeval_zero {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) :
              @[simp]
              theorem Polynomial.aeval_X {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) :
              (Polynomial.aeval x) Polynomial.X = x
              @[simp]
              theorem Polynomial.aeval_C {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) (r : R) :
              (Polynomial.aeval x) (Polynomial.C r) = (algebraMap R A) r
              @[simp]
              theorem Polynomial.aeval_monomial {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) {n : } {r : R} :
              theorem Polynomial.aeval_X_pow {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) {n : } :
              (Polynomial.aeval x) (Polynomial.X ^ n) = x ^ n
              theorem Polynomial.aeval_add {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] {p q : Polynomial R} (x : A) :
              theorem Polynomial.aeval_one {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) :
              theorem Polynomial.aeval_natCast {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) (n : ) :
              (Polynomial.aeval x) n = n
              @[deprecated Polynomial.aeval_natCast]
              theorem Polynomial.aeval_nat_cast {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) (n : ) :
              (Polynomial.aeval x) n = n

              Alias of Polynomial.aeval_natCast.

              theorem Polynomial.aeval_mul {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] {p q : Polynomial R} (x : A) :
              theorem Polynomial.comp_eq_aeval {R : Type u} [CommSemiring R] {p q : Polynomial R} :
              p.comp q = (Polynomial.aeval q) p
              theorem Polynomial.aeval_comp {R : Type u} [CommSemiring R] {p q : Polynomial R} {A : Type u_3} [Semiring A] [Algebra R A] (x : A) :
              def Polynomial.algEquivOfCompEqX {R : Type u} [CommSemiring R] (p q : Polynomial R) (hpq : p.comp q = Polynomial.X) (hqp : q.comp p = Polynomial.X) :

              Two polynomials p and q such that p(q(X))=X and q(p(X))=X induces an automorphism of the polynomial algebra.

              Equations
              Instances For
                @[simp]
                theorem Polynomial.algEquivOfCompEqX_symm_apply {R : Type u} [CommSemiring R] (p q : Polynomial R) (hpq : p.comp q = Polynomial.X) (hqp : q.comp p = Polynomial.X) (a : Polynomial R) :
                (p.algEquivOfCompEqX q hpq hqp).symm a = (Polynomial.aeval q) a
                @[simp]
                theorem Polynomial.algEquivOfCompEqX_apply {R : Type u} [CommSemiring R] (p q : Polynomial R) (hpq : p.comp q = Polynomial.X) (hqp : q.comp p = Polynomial.X) (a : Polynomial R) :
                (p.algEquivOfCompEqX q hpq hqp) a = (Polynomial.aeval p) a
                @[simp]
                theorem Polynomial.algEquivOfCompEqX_eq_iff {R : Type u} [CommSemiring R] (p q p' q' : Polynomial R) (hpq : p.comp q = Polynomial.X) (hqp : q.comp p = Polynomial.X) (hpq' : p'.comp q' = Polynomial.X) (hqp' : q'.comp p' = Polynomial.X) :
                p.algEquivOfCompEqX q hpq hqp = p'.algEquivOfCompEqX q' hpq' hqp' p = p'
                @[simp]
                theorem Polynomial.algEquivOfCompEqX_symm {R : Type u} [CommSemiring R] (p q : Polynomial R) (hpq : p.comp q = Polynomial.X) (hqp : q.comp p = Polynomial.X) :
                (p.algEquivOfCompEqX q hpq hqp).symm = q.algEquivOfCompEqX p hqp hpq

                The automorphism of the polynomial algebra given by p(X) ↦ p(a * X + b), with inverse p(X) ↦ p(a⁻¹ * (X - b)).

                Equations
                Instances For
                  @[simp]
                  theorem Polynomial.algEquivCMulXAddC_apply {R : Type u_3} [CommRing R] (a b : R) [Invertible a] (a✝ : Polynomial R) :
                  (Polynomial.algEquivCMulXAddC a b) a✝ = (Polynomial.aeval (Polynomial.C a * Polynomial.X + Polynomial.C b)) a✝
                  @[simp]
                  theorem Polynomial.algEquivCMulXAddC_symm_apply {R : Type u_3} [CommRing R] (a b : R) [Invertible a] (a✝ : Polynomial R) :
                  (Polynomial.algEquivCMulXAddC a b).symm a✝ = (Polynomial.aeval (Polynomial.C a * (Polynomial.X - Polynomial.C b))) a✝

                  The automorphism of the polynomial algebra given by p(X) ↦ p(X+t), with inverse p(X) ↦ p(X-t).

                  Equations
                  Instances For
                    @[simp]
                    theorem Polynomial.algEquivAevalXAddC_apply {R : Type u_3} [CommRing R] (t : R) (a : Polynomial R) :
                    (Polynomial.algEquivAevalXAddC t) a = (Polynomial.aeval (Polynomial.X + Polynomial.C t)) a
                    @[simp]
                    theorem Polynomial.algEquivAevalXAddC_symm_apply {R : Type u_3} [CommRing R] (t : R) (a : Polynomial R) :
                    (Polynomial.algEquivAevalXAddC t).symm a = (Polynomial.aeval (Polynomial.X - Polynomial.C t)) a

                    The involutive automorphism of the polynomial algebra given by p(X) ↦ p(-X).

                    Equations
                    • Polynomial.algEquivAevalNegX = (-Polynomial.X).algEquivOfCompEqX (-Polynomial.X)
                    Instances For
                      @[simp]
                      theorem Polynomial.algEquivAevalNegX_apply {R : Type u_3} [CommRing R] (a : Polynomial R) :
                      Polynomial.algEquivAevalNegX a = (Polynomial.aeval (-Polynomial.X)) a
                      @[simp]
                      theorem Polynomial.algEquivAevalNegX_symm_apply {R : Type u_3} [CommRing R] (a : Polynomial R) :
                      Polynomial.algEquivAevalNegX.symm a = (Polynomial.aeval (-Polynomial.X)) a
                      theorem Polynomial.comp_neg_X_comp_neg_X {R : Type u_3} [CommRing R] (p : Polynomial R) :
                      (p.comp (-Polynomial.X)).comp (-Polynomial.X) = p
                      theorem Polynomial.aeval_algHom {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (x : A) :
                      @[simp]
                      theorem Polynomial.aeval_X_left_apply {R : Type u} [CommSemiring R] (p : Polynomial R) :
                      (Polynomial.aeval Polynomial.X) p = p
                      theorem Polynomial.eval_unique {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (φ : Polynomial R →ₐ[R] A) (p : Polynomial R) :
                      φ p = Polynomial.eval₂ (algebraMap R A) (φ Polynomial.X) p
                      theorem Polynomial.aeval_algHom_apply {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_3} [FunLike F A B] [AlgHomClass F R A B] (f : F) (x : A) (p : Polynomial R) :
                      (Polynomial.aeval (f x)) p = f ((Polynomial.aeval x) p)
                      @[simp]
                      theorem Polynomial.coe_aeval_mk_apply {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] {p : Polynomial R} (x : A) {S : Subalgebra R A} (h : x S) :
                      ((Polynomial.aeval x, h) p) = (Polynomial.aeval x) p
                      theorem Polynomial.aeval_algEquiv {R : Type u} {A : Type z} {B : Type u_2} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A ≃ₐ[R] B) (x : A) :
                      Polynomial.aeval (f x) = (↑f).comp (Polynomial.aeval x)
                      @[simp]
                      theorem Polynomial.aeval_fn_apply {R : Type u} [CommSemiring R] {X : Type u_3} (g : Polynomial R) (f : XR) (x : X) :
                      theorem Polynomial.aeval_subalgebra_coe {R : Type u} [CommSemiring R] (g : Polynomial R) {A : Type u_3} [Semiring A] [Algebra R A] (s : Subalgebra R A) (f : s) :
                      ((Polynomial.aeval f) g) = (Polynomial.aeval f) g
                      theorem Polynomial.coeff_zero_eq_aeval_zero' {R : Type u} {A : Type z} [CommSemiring R] [Semiring A] [Algebra R A] (p : Polynomial R) :
                      (algebraMap R A) (p.coeff 0) = (Polynomial.aeval 0) p
                      theorem Polynomial.map_aeval_eq_aeval_map {R : Type u} [CommSemiring R] {S : Type u_3} {T : Type u_4} {U : Type u_5} [Semiring S] [CommSemiring T] [Semiring U] [Algebra R S] [Algebra T U] {φ : R →+* T} {ψ : S →+* U} (h : (algebraMap T U).comp φ = ψ.comp (algebraMap R S)) (p : Polynomial R) (a : S) :
                      theorem Polynomial.aeval_eq_zero_of_dvd_aeval_eq_zero {S : Type v} {T : Type w} [CommSemiring S] [CommSemiring T] [Algebra S T] {p q : Polynomial S} (h₁ : p q) {a : T} (h₂ : (Polynomial.aeval a) p = 0) :
                      theorem Polynomial.aeval_eq_sum_range {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {p : Polynomial R} (x : S) :
                      (Polynomial.aeval x) p = iFinset.range (p.natDegree + 1), p.coeff i x ^ i
                      theorem Polynomial.aeval_eq_sum_range' {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {p : Polynomial R} {n : } (hn : p.natDegree < n) (x : S) :
                      (Polynomial.aeval x) p = iFinset.range n, p.coeff i x ^ i
                      theorem Polynomial.isRoot_of_eval₂_map_eq_zero {R : Type u} {S : Type v} [CommSemiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} (hf : Function.Injective f) {r : R} :
                      Polynomial.eval₂ f (f r) p = 0p.IsRoot r
                      theorem Polynomial.isRoot_of_aeval_algebraMap_eq_zero {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {p : Polynomial R} (inj : Function.Injective (algebraMap R S)) {r : R} (hr : (Polynomial.aeval ((algebraMap R S) r)) p = 0) :
                      p.IsRoot r
                      def Polynomial.aevalTower {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (f : R →ₐ[S] A') (x : A') :

                      Version of aeval for defining algebra homs out of R[X] over a smaller base ring than R.

                      Equations
                      Instances For
                        @[simp]
                        theorem Polynomial.aevalTower_X {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') :
                        (Polynomial.aevalTower g y) Polynomial.X = y
                        @[simp]
                        theorem Polynomial.aevalTower_C {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') (x : R) :
                        (Polynomial.aevalTower g y) (Polynomial.C x) = g x
                        @[simp]
                        theorem Polynomial.aevalTower_comp_C {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') :
                        (↑(Polynomial.aevalTower g y)).comp Polynomial.C = g
                        theorem Polynomial.aevalTower_algebraMap {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') (x : R) :
                        theorem Polynomial.aevalTower_comp_algebraMap {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') :
                        (↑(Polynomial.aevalTower g y)).comp (algebraMap R (Polynomial R)) = g
                        theorem Polynomial.aevalTower_toAlgHom {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') (x : R) :
                        @[simp]
                        theorem Polynomial.aevalTower_comp_toAlgHom {R : Type u} {S : Type v} {A' : Type u_1} [CommSemiring R] [CommSemiring A'] [CommSemiring S] [Algebra S R] [Algebra S A'] (g : R →ₐ[S] A') (y : A') :
                        @[simp]
                        theorem Polynomial.aevalTower_id {S : Type v} [CommSemiring S] :
                        Polynomial.aevalTower (AlgHom.id S S) = Polynomial.aeval
                        @[simp]
                        theorem Polynomial.aevalTower_ofId {S : Type v} {A' : Type u_1} [CommSemiring A'] [CommSemiring S] [Algebra S A'] :
                        Polynomial.aevalTower (Algebra.ofId S A') = Polynomial.aeval
                        theorem Polynomial.dvd_term_of_dvd_eval_of_dvd_terms {S : Type v} [CommRing S] {z p : S} {f : Polynomial S} (i : ) (dvd_eval : p Polynomial.eval z f) (dvd_terms : ∀ (j : ), j ip f.coeff j * z ^ j) :
                        p f.coeff i * z ^ i
                        theorem Polynomial.dvd_term_of_isRoot_of_dvd_terms {S : Type v} [CommRing S] {r p : S} {f : Polynomial S} (i : ) (hr : f.IsRoot r) (h : ∀ (j : ), j ip f.coeff j * r ^ j) :
                        p f.coeff i * r ^ i
                        theorem Polynomial.eval_mul_X_sub_C {R : Type u} [Ring R] {p : Polynomial R} (r : R) :
                        Polynomial.eval r (p * (Polynomial.X - Polynomial.C r)) = 0

                        The evaluation map is not generally multiplicative when the coefficient ring is noncommutative, but nevertheless any polynomial of the form p * (X - monomial 0 r) is sent to zero when evaluated at r.

                        This is the key step in our proof of the Cayley-Hamilton theorem.

                        theorem Polynomial.not_isUnit_X_sub_C {R : Type u} [Ring R] [Nontrivial R] (r : R) :
                        ¬IsUnit (Polynomial.X - Polynomial.C r)
                        theorem Polynomial.aeval_endomorphism {R : Type u} [CommRing R] {M : Type u_3} [AddCommGroup M] [Module R M] (f : M →ₗ[R] M) (v : M) (p : Polynomial R) :
                        ((Polynomial.aeval f) p) v = p.sum fun (n : ) (b : R) => b (f ^ n) v
                        theorem Polynomial.X_sub_C_pow_dvd_iff {R : Type u} [CommRing R] {p : Polynomial R} {t : R} {n : } :
                        (Polynomial.X - Polynomial.C t) ^ n p Polynomial.X ^ n p.comp (Polynomial.X + Polynomial.C t)
                        theorem Polynomial.comp_X_add_C_eq_zero_iff {R : Type u} [CommRing R] {p : Polynomial R} {t : R} :
                        p.comp (Polynomial.X + Polynomial.C t) = 0 p = 0
                        theorem Polynomial.comp_X_add_C_ne_zero_iff {R : Type u} [CommRing R] {p : Polynomial R} {t : R} :
                        p.comp (Polynomial.X + Polynomial.C t) 0 p 0
                        theorem Polynomial.dvd_comp_C_mul_X_add_C_iff {R : Type u} [CommRing R] (p q : Polynomial R) (a b : R) [Invertible a] :
                        p q.comp (Polynomial.C a * Polynomial.X + Polynomial.C b) p.comp (Polynomial.C a * (Polynomial.X - Polynomial.C b)) q
                        theorem Polynomial.dvd_comp_X_sub_C_iff {R : Type u} [CommRing R] (p q : Polynomial R) (a : R) :
                        p q.comp (Polynomial.X - Polynomial.C a) p.comp (Polynomial.X + Polynomial.C a) q
                        theorem Polynomial.dvd_comp_X_add_C_iff {R : Type u} [CommRing R] (p q : Polynomial R) (a : R) :
                        p q.comp (Polynomial.X + Polynomial.C a) p.comp (Polynomial.X - Polynomial.C a) q
                        theorem Polynomial.dvd_comp_neg_X_iff {R : Type u} [CommRing R] (p q : Polynomial R) :
                        p q.comp (-Polynomial.X) p.comp (-Polynomial.X) q
                        theorem Polynomial.units_coeff_zero_smul {R : Type u} [CommRing R] [IsDomain R] (c : (Polynomial R)ˣ) (p : Polynomial R) :
                        (↑c).coeff 0 p = c * p
                        theorem Polynomial.aeval_apply_smul_mem_of_le_comap' {R : Type u} {A : Type z} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] {q : Submodule R M} {m : M} [Semiring A] [Algebra R A] [Module A M] [IsScalarTower R A M] (hm : m q) (p : Polynomial R) (a : A) (hq : q Submodule.comap ((Algebra.lsmul R R M) a) q) :
                        theorem Polynomial.aeval_apply_smul_mem_of_le_comap {R : Type u} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] {q : Submodule R M} {m : M} (hm : m q) (p : Polynomial R) (f : Module.End R M) (hq : q Submodule.comap f q) :
                        ((Polynomial.aeval f) p) m q
                        @[irreducible]
                        theorem Polynomial.eq_zero_of_mul_eq_zero_of_smul {R : Type u} [CommSemiring R] (P : Polynomial R) (h : ∀ (r : R), r P = 0r = 0) (Q : Polynomial R) :
                        P * Q = 0Q = 0
                        theorem Polynomial.nmem_nonZeroDivisors_iff {R : Type u} [CommSemiring R] {P : Polynomial R} :
                        PnonZeroDivisors (Polynomial R) ∃ (a : R), a 0 a P = 0

                        McCoy theorem: a polynomial P : R[X] is a zerodivisor if and only if there is a : R such that a ≠ 0 and a • P = 0.

                        theorem Polynomial.mem_nonZeroDivisors_iff {R : Type u} [CommSemiring R] {P : Polynomial R} :
                        P nonZeroDivisors (Polynomial R) ∀ (a : R), a P = 0a = 0