Results about IsRegular and MulOpposite #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Alias of the reverse direction of isLeftRegular_op.
Alias of the reverse direction of isRightRegular_op.
Alias of the reverse direction of isRegular_op.
theorem
IsAddRegular.op
{R : Type u_1}
[Add R]
{a : R}
:
IsAddRegular a → IsAddRegular (AddOpposite.op a)
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Alias of the reverse direction of isLeftRegular_unop.
Alias of the reverse direction of isRightRegular_unop.
theorem
IsRegular.unop
{R : Type u_1}
[Mul R]
{a : Rᵐᵒᵖ}
:
IsRegular a → IsRegular (MulOpposite.unop a)
Alias of the reverse direction of isRegular_unop.
theorem
IsAddRegular.unop
{R : Type u_1}
[Add R]
{a : Rᵃᵒᵖ}
:
IsAddRegular a → IsAddRegular (AddOpposite.unop a)