Pointwise instances on Subring
s #
This file provides the action Subring.pointwiseMulAction
which matches the action of
mulActionSet
.
This actions is available in the Pointwise
locale.
Implementation notes #
This file is almost identical to the file Mathlib.Algebra.Ring.Subsemiring.Pointwise
. Where
possible, try to keep them in sync.
def
Subring.pointwiseMulAction
{M : Type u_1}
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
:
The action on a subring corresponding to applying the action to every element.
This is available as an instance in the Pointwise
locale.
Equations
- Subring.pointwiseMulAction = MulAction.mk ⋯ ⋯
Instances For
theorem
Subring.pointwise_smul_def
{M : Type u_1}
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(S : Subring R)
:
a • S = Subring.map (MulSemiringAction.toRingHom M R a) S
instance
Subring.instCovariantClassHSMulLe
{M : Type u_1}
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
:
CovariantClass M (Subring R) HSMul.hSMul LE.le
theorem
Subring.smul_closure
{M : Type u_1}
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
(a : M)
(s : Set R)
:
a • Subring.closure s = Subring.closure (a • s)
instance
Subring.pointwise_central_scalar
{M : Type u_1}
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
[MulSemiringAction Mᵐᵒᵖ R]
[IsCentralScalar M R]
:
IsCentralScalar M (Subring R)
TODO: add equivSMul
like we have for subgroup.
@[simp]
theorem
Subring.smul_mem_pointwise_smul_iff₀
{M : Type u_1}
{R : Type u_2}
[GroupWithZero M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(ha : a ≠ 0)
(S : Subring R)
(x : R)
:
theorem
Subring.mem_pointwise_smul_iff_inv_smul_mem₀
{M : Type u_1}
{R : Type u_2}
[GroupWithZero M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(ha : a ≠ 0)
(S : Subring R)
(x : R)
:
theorem
Subring.mem_inv_pointwise_smul_iff₀
{M : Type u_1}
{R : Type u_2}
[GroupWithZero M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(ha : a ≠ 0)
(S : Subring R)
(x : R)
:
@[simp]
theorem
Subring.pointwise_smul_le_pointwise_smul_iff₀
{M : Type u_1}
{R : Type u_2}
[GroupWithZero M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(ha : a ≠ 0)
{S T : Subring R}
:
theorem
Subring.pointwise_smul_le_iff₀
{M : Type u_1}
{R : Type u_2}
[GroupWithZero M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(ha : a ≠ 0)
{S T : Subring R}
:
theorem
Subring.le_pointwise_smul_iff₀
{M : Type u_1}
{R : Type u_2}
[GroupWithZero M]
[Ring R]
[MulSemiringAction M R]
{a : M}
(ha : a ≠ 0)
{S T : Subring R}
: