FrΓ©chet derivative of constant functions #
This file contains the usual formulas (and existence assertions) for the derivative of constant
functions, including various special cases such as the functions 0, 1, Nat.cast n,
Int.cast z, and other numerals.
Tags #
derivative, differentiable, FrΓ©chet, calculus
theorem
hasStrictFDerivAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
:
HasStrictFDerivAt (fun (x : E) => c) 0 x
theorem
hasStrictFDerivAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
:
HasStrictFDerivAt 0 0 x
theorem
hasStrictFDerivAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
:
HasStrictFDerivAt 1 0 x
theorem
hasStrictFDerivAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
:
HasStrictFDerivAt (βn) 0 x
theorem
hasStrictFDerivAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
:
HasStrictFDerivAt (βz) 0 x
theorem
hasStrictFDerivAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
:
HasStrictFDerivAt (OfNat.ofNat n) 0 x
theorem
hasFDerivAtFilter_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (fun (x : E) => c) 0 x L
theorem
hasFDerivAtFilter_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
(L : Filter E)
:
HasFDerivAtFilter 0 0 x L
theorem
hasFDerivAtFilter_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
(L : Filter E)
:
HasFDerivAtFilter 1 0 x L
theorem
hasFDerivAtFilter_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (βn) 0 x L
theorem
hasFDerivAtFilter_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (βz) 0 x L
theorem
hasFDerivAtFilter_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (OfNat.ofNat n) 0 x L
theorem
hasFDerivWithinAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
(s : Set E)
:
HasFDerivWithinAt (fun (x : E) => c) 0 s x
theorem
hasFDerivWithinAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
(s : Set E)
:
HasFDerivWithinAt 0 0 s x
theorem
hasFDerivWithinAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
(s : Set E)
:
HasFDerivWithinAt 1 0 s x
theorem
hasFDerivWithinAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
(s : Set E)
:
HasFDerivWithinAt (βn) 0 s x
theorem
hasFDerivWithinAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
(s : Set E)
:
HasFDerivWithinAt (βz) 0 s x
theorem
hasFDerivWithinAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
(s : Set E)
:
HasFDerivWithinAt (OfNat.ofNat n) 0 s x
theorem
hasFDerivAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
:
HasFDerivAt (fun (x : E) => c) 0 x
theorem
hasFDerivAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
:
HasFDerivAt 0 0 x
theorem
hasFDerivAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
:
HasFDerivAt 1 0 x
theorem
hasFDerivAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
:
HasFDerivAt (βn) 0 x
theorem
hasFDerivAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
:
HasFDerivAt (βz) 0 x
theorem
hasFDerivAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
:
HasFDerivAt (OfNat.ofNat n) 0 x
@[simp]
theorem
differentiableAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
(c : F)
:
DifferentiableAt π (fun (x : E) => c) x
@[simp]
theorem
differentiableAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
:
DifferentiableAt π 0 x
@[simp]
theorem
differentiableAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
:
DifferentiableAt π 1 x
@[simp]
theorem
differentiableAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
:
DifferentiableAt π (βn) x
@[simp]
theorem
differentiableAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
:
DifferentiableAt π (βz) x
@[simp]
theorem
differentiableAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
:
DifferentiableAt π (OfNat.ofNat n) x
theorem
differentiableWithinAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
(c : F)
:
DifferentiableWithinAt π (fun (x : E) => c) s x
theorem
differentiableWithinAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
:
DifferentiableWithinAt π 0 s x
theorem
differentiableWithinAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
[One F]
:
DifferentiableWithinAt π 1 s x
theorem
differentiableWithinAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
[NatCast F]
(n : β)
:
DifferentiableWithinAt π (βn) s x
theorem
differentiableWithinAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
[IntCast F]
(z : β€)
:
DifferentiableWithinAt π (βz) s x
theorem
differentiableWithinAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
(n : β)
[OfNat F n]
:
DifferentiableWithinAt π (OfNat.ofNat n) s x
theorem
fderivWithin_const_apply
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
(c : F)
:
@[simp]
theorem
fderivWithin_fun_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(c : F)
:
@[simp]
theorem
fderivWithin_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(c : F)
:
@[simp]
theorem
fderivWithin_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
:
@[simp]
theorem
fderivWithin_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[One F]
:
@[simp]
theorem
fderivWithin_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[NatCast F]
(n : β)
:
@[simp]
theorem
fderivWithin_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[IntCast F]
(z : β€)
:
@[simp]
theorem
fderivWithin_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(n : β)
[OfNat F n]
:
theorem
fderiv_const_apply
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
(c : F)
:
@[simp]
theorem
fderiv_fun_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
:
@[simp]
theorem
fderiv_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
:
@[simp]
theorem
fderiv_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
:
@[simp]
theorem
fderiv_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
:
@[simp]
theorem
fderiv_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
:
@[simp]
theorem
fderiv_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
:
@[simp]
theorem
fderiv_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
:
@[simp]
theorem
differentiable_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
:
Differentiable π fun (x : E) => c
@[simp]
theorem
differentiable_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
:
Differentiable π 0
@[simp]
theorem
differentiable_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
:
Differentiable π 1
@[simp]
theorem
differentiable_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
:
Differentiable π βn
@[simp]
theorem
differentiable_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
:
Differentiable π βz
@[simp]
theorem
differentiable_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
:
Differentiable π (OfNat.ofNat n)
@[simp]
theorem
differentiableOn_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(c : F)
:
DifferentiableOn π (fun (x : E) => c) s
@[simp]
theorem
differentiableOn_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
:
DifferentiableOn π 0 s
@[simp]
theorem
differentiableOn_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[One F]
:
DifferentiableOn π 1 s
@[simp]
theorem
differentiableOn_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[NatCast F]
(n : β)
:
DifferentiableOn π (βn) s
@[simp]
theorem
differentiableOn_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[IntCast F]
(z : β€)
:
DifferentiableOn π (βz) s
@[simp]
theorem
differentiableOn_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(n : β)
[OfNat F n]
:
DifferentiableOn π (OfNat.ofNat n) s
theorem
hasFDerivWithinAt_singleton
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E β F)
(x : E)
:
HasFDerivWithinAt f 0 {x} x
theorem
hasFDerivAt_of_subsingleton
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[h : Subsingleton E]
(f : E β F)
(x : E)
:
HasFDerivAt f 0 x
theorem
differentiableOn_empty
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
DifferentiableOn π f β
theorem
differentiableOn_singleton
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
:
DifferentiableOn π f {x}
theorem
Set.Subsingleton.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(hs : s.Subsingleton)
:
DifferentiableOn π f s
theorem
hasFDerivAt_zero_of_eventually_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
(hf : f =αΆ [nhds x] fun (x : E) => c)
:
HasFDerivAt f 0 x
theorem
differentiableWithinAt_of_isInvertible_fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hf : (fderivWithin π f s x).IsInvertible)
:
DifferentiableWithinAt π f s x
theorem
differentiableAt_of_isInvertible_fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(hf : (fderiv π f x).IsInvertible)
:
DifferentiableAt π f x
Support of derivatives #
theorem
HasStrictFDerivAt.of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasStrictFDerivAt f 0 x
@[deprecated HasStrictFDerivAt.of_notMem_tsupport (since := "2025-05-24")]
theorem
HasStrictFDerivAt.of_nmem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasStrictFDerivAt f 0 x
Alias of HasStrictFDerivAt.of_notMem_tsupport.
theorem
HasFDerivAt.of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasFDerivAt f 0 x
@[deprecated HasFDerivAt.of_notMem_tsupport (since := "2025-05-24")]
theorem
HasFDerivAt.of_nmem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasFDerivAt f 0 x
Alias of HasFDerivAt.of_notMem_tsupport.
theorem
HasFDerivWithinAt.of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
{x : E}
(h : x β tsupport f)
:
HasFDerivWithinAt f 0 s x
@[deprecated HasFDerivWithinAt.of_notMem_tsupport (since := "2025-05-23")]
theorem
HasFDerivWithinAt.of_not_mem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
{x : E}
(h : x β tsupport f)
:
HasFDerivWithinAt f 0 s x
Alias of HasFDerivWithinAt.of_notMem_tsupport.
theorem
fderiv_of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
@[deprecated fderiv_of_notMem_tsupport (since := "2025-05-23")]
theorem
fderiv_of_not_mem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
Alias of fderiv_of_notMem_tsupport.
theorem
support_fderiv_subset
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
theorem
tsupport_fderiv_subset
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
theorem
HasCompactSupport.fderiv
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : HasCompactSupport f)
:
HasCompactSupport (fderiv π f)
theorem
HasCompactSupport.fderiv_apply
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : HasCompactSupport f)
(v : E)
:
HasCompactSupport fun (x : E) => (fderiv π f x) v