Documentation
Mathlib
.
Analysis
.
Normed
.
Group
.
Int
Search
return to top
source
Imports
Init
Mathlib.Topology.Instances.Int
Mathlib.Analysis.Normed.Group.Basic
Imported by
Int
.
instNormedAddCommGroup
Int
.
norm_cast_real
Int
.
norm_eq_abs
Int
.
norm_natCast
Int
.
norm_coe_nat
NNReal
.
natCast_natAbs
Int
.
abs_le_floor_nnreal_iff
norm_zpow_le_mul_norm
norm_zsmul_le
nnnorm_zpow_le_mul_norm
nnnorm_zsmul_le
ℤ as a normed group
#
source
instance
Int
.
instNormedAddCommGroup
:
NormedAddCommGroup
ℤ
Equations
Int.instNormedAddCommGroup
=
NormedAddCommGroup.mk
Int.instNormedAddCommGroup.proof_1
source
theorem
Int
.
norm_cast_real
(m :
ℤ
)
:
‖
↑
m
‖
=
‖
m
‖
source
theorem
Int
.
norm_eq_abs
(n :
ℤ
)
:
‖
n
‖
=
|
↑
n
|
source
@[simp]
theorem
Int
.
norm_natCast
(n :
ℕ
)
:
‖
↑
n
‖
=
↑
n
source
@[deprecated Int.norm_natCast]
theorem
Int
.
norm_coe_nat
(n :
ℕ
)
:
‖
↑
n
‖
=
↑
n
Alias
of
Int.norm_natCast
.
source
theorem
NNReal
.
natCast_natAbs
(n :
ℤ
)
:
↑
n
.natAbs
=
‖
n
‖₊
source
theorem
Int
.
abs_le_floor_nnreal_iff
(z :
ℤ
)
(c :
NNReal
)
:
|
z
|
≤
↑
⌊
c
⌋₊
↔
‖
z
‖₊
≤
c
source
theorem
norm_zpow_le_mul_norm
{α :
Type
u_1}
[
SeminormedCommGroup
α
]
(n :
ℤ
)
(a :
α
)
:
‖
a
^
n
‖
≤
‖
n
‖
*
‖
a
‖
source
theorem
norm_zsmul_le
{α :
Type
u_1}
[
SeminormedAddCommGroup
α
]
(n :
ℤ
)
(a :
α
)
:
‖
n
•
a
‖
≤
‖
n
‖
*
‖
a
‖
source
theorem
nnnorm_zpow_le_mul_norm
{α :
Type
u_1}
[
SeminormedCommGroup
α
]
(n :
ℤ
)
(a :
α
)
:
‖
a
^
n
‖₊
≤
‖
n
‖₊
*
‖
a
‖₊
source
theorem
nnnorm_zsmul_le
{α :
Type
u_1}
[
SeminormedAddCommGroup
α
]
(n :
ℤ
)
(a :
α
)
:
‖
n
•
a
‖₊
≤
‖
n
‖₊
*
‖
a
‖₊