Conjugate morphisms by isomorphisms #
We define
CategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁),
cf. Equiv.arrowCongr,
and CategoryTheory.Iso.isoCongr : (f : X₁ ≅ X₂) → (g : Y₁ ≅ Y₂) → (X₁ ≅ Y₁) ≃ (X₂ ≅ Y₂).
As corollaries, an isomorphism α : X ≅ Y defines
- a monoid isomorphism
CategoryTheory.Iso.conj : End X ≃* End Ybyα.conj f = α.inv ≫ f ≫ α.hom; - a group isomorphism
CategoryTheory.Iso.conjAut : Aut X ≃* Aut Ybyα.conjAut f = α.symm ≪≫ f ≪≫ αwhich can be found inCategoryTheory.Conj.
def
CategoryTheory.Iso.homCongr
{C : Type u}
[Category.{v, u} C]
{X Y X₁ Y₁ : C}
(α : X ≅ X₁)
(β : Y ≅ Y₁)
:
If X is isomorphic to X₁ and Y is isomorphic to Y₁, then
there is a natural bijection between X ⟶ Y and X₁ ⟶ Y₁. See also Equiv.arrowCongr.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Iso.homCongr_apply
{C : Type u}
[Category.{v, u} C]
{X Y X₁ Y₁ : C}
(α : X ≅ X₁)
(β : Y ≅ Y₁)
(f : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.Iso.homCongr_symm_apply
{C : Type u}
[Category.{v, u} C]
{X Y X₁ Y₁ : C}
(α : X ≅ X₁)
(β : Y ≅ Y₁)
(f : X₁ ⟶ Y₁)
:
theorem
CategoryTheory.Iso.homCongr_comp
{C : Type u}
[Category.{v, u} C]
{X Y Z X₁ Y₁ Z₁ : C}
(α : X ≅ X₁)
(β : Y ≅ Y₁)
(γ : Z ≅ Z₁)
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
(α.homCongr γ) (CategoryStruct.comp f g) = CategoryStruct.comp ((α.homCongr β) f) ((β.homCongr γ) g)
def
CategoryTheory.Iso.isoCongr
{C : Type u}
[Category.{v, u} C]
{X₁ Y₁ X₂ Y₂ : C}
(f : X₁ ≅ X₂)
(g : Y₁ ≅ Y₂)
:
If X is isomorphic to X₁ and Y is isomorphic to Y₁, then
there is a bijection between X ≅ Y and X₁ ≅ Y₁.
Equations
Instances For
If X₁ is isomorphic to X₂, then there is a bijection between X₁ ≅ Y and X₂ ≅ Y.
Equations
- f.isoCongrLeft = f.isoCongr (CategoryTheory.Iso.refl Y)
Instances For
If Y₁ is isomorphic to Y₂, then there is a bijection between X ≅ Y₁ and X ≅ Y₂.