Scalar multiplication on ℝ≥0∞. #
This file defines basic scalar actions on extended nonnegative reals, showing that
MulActions, DistribMulActions, Modules and Algebras restrict from ℝ≥0∞ to ℝ≥0.
instance
ENNReal.instIsScalarTowerNNReal
{M : Type u_1}
{N : Type u_2}
[MulAction ENNReal M]
[MulAction ENNReal N]
[SMul M N]
[IsScalarTower ENNReal M N]
:
IsScalarTower NNReal M N
instance
ENNReal.smulCommClass_left
{M : Type u_1}
{N : Type u_2}
[MulAction ENNReal N]
[SMul M N]
[SMulCommClass ENNReal M N]
:
SMulCommClass NNReal M N
instance
ENNReal.smulCommClass_right
{M : Type u_1}
{N : Type u_2}
[MulAction ENNReal N]
[SMul M N]
[SMulCommClass M ENNReal N]
:
SMulCommClass M NNReal N
noncomputable instance
ENNReal.instDistribMulActionNNReal
{M : Type u_1}
[AddMonoid M]
[DistribMulAction ENNReal M]
:
A DistribMulAction over ℝ≥0∞ restricts to a DistribMulAction over ℝ≥0.
noncomputable instance
ENNReal.instModuleNNReal
{M : Type u_1}
[AddCommMonoid M]
[Module ENNReal M]
:
An Algebra over ℝ≥0∞ restricts to an Algebra over ℝ≥0.
Equations
- ENNReal.instAlgebraNNReal = { smul := fun (x1 : NNReal) (x2 : A) => x1 • x2, algebraMap := (algebraMap ENNReal A).comp ENNReal.ofNNRealHom, commutes' := ⋯, smul_def' := ⋯ }
theorem
ENNReal.smul_top
{R : Type u_1}
[Zero R]
[SMulWithZero R ENNReal]
[IsScalarTower R ENNReal ENNReal]
[NoZeroSMulDivisors R ENNReal]
[DecidableEq R]
(c : R)
: