Documentation

Mathlib.Data.Matrix.Mul

Matrix multiplication #

This file defines vector and matrix multiplication

Main definitions #

Notation #

The locale Matrix gives the following notation:

See Mathlib/Data/Matrix/ConjTranspose.lean for

Implementation notes #

For convenience, Matrix m n α is defined as m → n → α, as this allows elements of the matrix to be accessed with A i j. However, it is not advisable to construct matrices using terms of the form fun i j ↦ _ or even (fun i j ↦ _ : Matrix m n α), as these are not recognized by Lean as having the right type. Instead, Matrix.of should be used.

TODO #

Under various conditions, multiplication of infinite matrices makes sense. These have not yet been implemented.

def dotProduct {m : Type u_2} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] (v w : mα) :
α

dotProduct v w is the sum of the entrywise products v i * w i

Equations
Instances For
    @[deprecated dotProduct]
    def Matrix.dotProduct {m : Type u_2} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] (v w : mα) :
    α

    Alias of dotProduct.


    dotProduct v w is the sum of the entrywise products v i * w i

    Equations
    Instances For

      dotProduct v w is the sum of the entrywise products v i * w i

      Equations
      Instances For
        theorem dotProduct_assoc {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalSemiring α] (u : mα) (w : nα) (v : Matrix m n α) :
        (fun (j : n) => u ⬝ᵥ fun (i : m) => v i j) ⬝ᵥ w = u ⬝ᵥ fun (i : m) => v i ⬝ᵥ w
        @[deprecated dotProduct_assoc]
        theorem Matrix.dotProduct_assoc {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalSemiring α] (u : mα) (w : nα) (v : Matrix m n α) :
        (fun (j : n) => u ⬝ᵥ fun (i : m) => v i j) ⬝ᵥ w = u ⬝ᵥ fun (i : m) => v i ⬝ᵥ w

        Alias of dotProduct_assoc.

        theorem dotProduct_comm {m : Type u_2} {α : Type v} [Fintype m] [AddCommMonoid α] [CommSemigroup α] (v w : mα) :
        v ⬝ᵥ w = w ⬝ᵥ v
        @[deprecated dotProduct_comm]
        theorem Matrix.dotProduct_comm {m : Type u_2} {α : Type v} [Fintype m] [AddCommMonoid α] [CommSemigroup α] (v w : mα) :
        v ⬝ᵥ w = w ⬝ᵥ v

        Alias of dotProduct_comm.

        @[simp]
        theorem dotProduct_pUnit {α : Type v} [AddCommMonoid α] [Mul α] (v w : PUnit.{u_10 + 1}α) :
        @[deprecated dotProduct_pUnit]
        theorem Matrix.dotProduct_pUnit {α : Type v} [AddCommMonoid α] [Mul α] (v w : PUnit.{u_10 + 1}α) :

        Alias of dotProduct_pUnit.

        theorem dotProduct_one {n : Type u_3} {α : Type v} [Fintype n] [MulOneClass α] [AddCommMonoid α] (v : nα) :
        v ⬝ᵥ 1 = i : n, v i
        @[deprecated dotProduct_one]
        theorem Matrix.dotProduct_one {n : Type u_3} {α : Type v} [Fintype n] [MulOneClass α] [AddCommMonoid α] (v : nα) :
        v ⬝ᵥ 1 = i : n, v i

        Alias of dotProduct_one.

        theorem one_dotProduct {n : Type u_3} {α : Type v} [Fintype n] [MulOneClass α] [AddCommMonoid α] (v : nα) :
        1 ⬝ᵥ v = i : n, v i
        @[deprecated one_dotProduct]
        theorem Matrix.one_dotProduct {n : Type u_3} {α : Type v} [Fintype n] [MulOneClass α] [AddCommMonoid α] (v : nα) :
        1 ⬝ᵥ v = i : n, v i

        Alias of one_dotProduct.

        @[simp]
        theorem dotProduct_zero {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        v ⬝ᵥ 0 = 0
        @[deprecated dotProduct_zero]
        theorem Matrix.dotProduct_zero {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        v ⬝ᵥ 0 = 0

        Alias of dotProduct_zero.

        @[simp]
        theorem dotProduct_zero' {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        (v ⬝ᵥ fun (x : m) => 0) = 0
        @[deprecated dotProduct_zero']
        theorem Matrix.dotProduct_zero' {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        (v ⬝ᵥ fun (x : m) => 0) = 0

        Alias of dotProduct_zero'.

        @[simp]
        theorem zero_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        0 ⬝ᵥ v = 0
        @[deprecated zero_dotProduct]
        theorem Matrix.zero_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        0 ⬝ᵥ v = 0

        Alias of zero_dotProduct.

        @[simp]
        theorem zero_dotProduct' {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        (fun (x : m) => 0) ⬝ᵥ v = 0
        @[deprecated zero_dotProduct']
        theorem Matrix.zero_dotProduct' {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
        (fun (x : m) => 0) ⬝ᵥ v = 0

        Alias of zero_dotProduct'.

        @[simp]
        theorem add_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (u v w : mα) :
        (u + v) ⬝ᵥ w = u ⬝ᵥ w + v ⬝ᵥ w
        @[deprecated add_dotProduct]
        theorem Matrix.add_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (u v w : mα) :
        (u + v) ⬝ᵥ w = u ⬝ᵥ w + v ⬝ᵥ w

        Alias of add_dotProduct.

        @[simp]
        theorem dotProduct_add {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (u v w : mα) :
        u ⬝ᵥ (v + w) = u ⬝ᵥ v + u ⬝ᵥ w
        @[deprecated dotProduct_add]
        theorem Matrix.dotProduct_add {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (u v w : mα) :
        u ⬝ᵥ (v + w) = u ⬝ᵥ v + u ⬝ᵥ w

        Alias of dotProduct_add.

        @[simp]
        theorem sum_elim_dotProduct_sum_elim {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u v : mα) (x y : nα) :
        @[deprecated sum_elim_dotProduct_sum_elim]
        theorem Matrix.sum_elim_dotProduct_sum_elim {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u v : mα) (x y : nα) :

        Alias of sum_elim_dotProduct_sum_elim.

        @[simp]
        theorem comp_equiv_symm_dotProduct {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u : mα) (x : nα) (e : m n) :
        u e.symm ⬝ᵥ x = u ⬝ᵥ x e

        Permuting a vector on the left of a dot product can be transferred to the right.

        @[deprecated comp_equiv_symm_dotProduct]
        theorem Matrix.comp_equiv_symm_dotProduct {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u : mα) (x : nα) (e : m n) :
        u e.symm ⬝ᵥ x = u ⬝ᵥ x e

        Alias of comp_equiv_symm_dotProduct.


        Permuting a vector on the left of a dot product can be transferred to the right.

        @[simp]
        theorem dotProduct_comp_equiv_symm {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u : mα) (x : nα) (e : n m) :
        u ⬝ᵥ x e.symm = u e ⬝ᵥ x

        Permuting a vector on the right of a dot product can be transferred to the left.

        @[deprecated dotProduct_comp_equiv_symm]
        theorem Matrix.dotProduct_comp_equiv_symm {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u : mα) (x : nα) (e : n m) :
        u ⬝ᵥ x e.symm = u e ⬝ᵥ x

        Alias of dotProduct_comp_equiv_symm.


        Permuting a vector on the right of a dot product can be transferred to the left.

        @[simp]
        theorem comp_equiv_dotProduct_comp_equiv {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (x y : nα) (e : m n) :
        x e ⬝ᵥ y e = x ⬝ᵥ y

        Permuting vectors on both sides of a dot product is a no-op.

        @[deprecated comp_equiv_dotProduct_comp_equiv]
        theorem Matrix.comp_equiv_dotProduct_comp_equiv {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (x y : nα) (e : m n) :
        x e ⬝ᵥ y e = x ⬝ᵥ y

        Alias of comp_equiv_dotProduct_comp_equiv.


        Permuting vectors on both sides of a dot product is a no-op.

        @[simp]
        theorem diagonal_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
        Matrix.diagonal v i ⬝ᵥ w = v i * w i
        @[deprecated diagonal_dotProduct]
        theorem Matrix.diagonal_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
        Matrix.diagonal v i ⬝ᵥ w = v i * w i

        Alias of diagonal_dotProduct.

        @[simp]
        theorem dotProduct_diagonal {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
        v ⬝ᵥ Matrix.diagonal w i = v i * w i
        @[deprecated dotProduct_diagonal]
        theorem Matrix.dotProduct_diagonal {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
        v ⬝ᵥ Matrix.diagonal w i = v i * w i

        Alias of dotProduct_diagonal.

        @[simp]
        theorem dotProduct_diagonal' {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
        (v ⬝ᵥ fun (j : m) => Matrix.diagonal w j i) = v i * w i
        @[deprecated dotProduct_diagonal']
        theorem Matrix.dotProduct_diagonal' {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
        (v ⬝ᵥ fun (j : m) => Matrix.diagonal w j i) = v i * w i

        Alias of dotProduct_diagonal'.

        @[simp]
        theorem single_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v : mα) (x : α) (i : m) :
        Pi.single i x ⬝ᵥ v = x * v i
        @[deprecated single_dotProduct]
        theorem Matrix.single_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v : mα) (x : α) (i : m) :
        Pi.single i x ⬝ᵥ v = x * v i

        Alias of single_dotProduct.

        @[simp]
        theorem dotProduct_single {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v : mα) (x : α) (i : m) :
        v ⬝ᵥ Pi.single i x = v i * x
        @[deprecated dotProduct_single]
        theorem Matrix.dotProduct_single {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v : mα) (x : α) (i : m) :
        v ⬝ᵥ Pi.single i x = v i * x

        Alias of dotProduct_single.

        @[simp]
        theorem one_dotProduct_one {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] :
        1 ⬝ᵥ 1 = (Fintype.card n)
        @[deprecated one_dotProduct_one]
        theorem Matrix.one_dotProduct_one {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] :
        1 ⬝ᵥ 1 = (Fintype.card n)

        Alias of one_dotProduct_one.

        theorem dotProduct_single_one {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] [DecidableEq n] (v : nα) (i : n) :
        v ⬝ᵥ Pi.single i 1 = v i
        @[deprecated dotProduct_single_one]
        theorem Matrix.dotProduct_single_one {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] [DecidableEq n] (v : nα) (i : n) :
        v ⬝ᵥ Pi.single i 1 = v i

        Alias of dotProduct_single_one.

        theorem single_one_dotProduct {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] [DecidableEq n] (i : n) (v : nα) :
        Pi.single i 1 ⬝ᵥ v = v i
        @[deprecated single_one_dotProduct]
        theorem Matrix.single_one_dotProduct {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] [DecidableEq n] (i : n) (v : nα) :
        Pi.single i 1 ⬝ᵥ v = v i

        Alias of single_one_dotProduct.

        @[simp]
        theorem neg_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
        -v ⬝ᵥ w = -(v ⬝ᵥ w)
        @[deprecated neg_dotProduct]
        theorem Matrix.neg_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
        -v ⬝ᵥ w = -(v ⬝ᵥ w)

        Alias of neg_dotProduct.

        @[simp]
        theorem dotProduct_neg {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
        v ⬝ᵥ -w = -(v ⬝ᵥ w)
        @[deprecated dotProduct_neg]
        theorem Matrix.dotProduct_neg {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
        v ⬝ᵥ -w = -(v ⬝ᵥ w)

        Alias of dotProduct_neg.

        theorem neg_dotProduct_neg {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
        -v ⬝ᵥ -w = v ⬝ᵥ w
        @[deprecated neg_dotProduct_neg]
        theorem Matrix.neg_dotProduct_neg {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
        -v ⬝ᵥ -w = v ⬝ᵥ w

        Alias of neg_dotProduct_neg.

        @[simp]
        theorem sub_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (u v w : mα) :
        (u - v) ⬝ᵥ w = u ⬝ᵥ w - v ⬝ᵥ w
        @[deprecated sub_dotProduct]
        theorem Matrix.sub_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (u v w : mα) :
        (u - v) ⬝ᵥ w = u ⬝ᵥ w - v ⬝ᵥ w

        Alias of sub_dotProduct.

        @[simp]
        theorem dotProduct_sub {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (u v w : mα) :
        u ⬝ᵥ (v - w) = u ⬝ᵥ v - u ⬝ᵥ w
        @[deprecated dotProduct_sub]
        theorem Matrix.dotProduct_sub {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (u v w : mα) :
        u ⬝ᵥ (v - w) = u ⬝ᵥ v - u ⬝ᵥ w

        Alias of dotProduct_sub.

        @[simp]
        theorem smul_dotProduct {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [Monoid R] [Mul α] [AddCommMonoid α] [DistribMulAction R α] [IsScalarTower R α α] (x : R) (v w : mα) :
        x v ⬝ᵥ w = x (v ⬝ᵥ w)
        @[deprecated smul_dotProduct]
        theorem Matrix.smul_dotProduct {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [Monoid R] [Mul α] [AddCommMonoid α] [DistribMulAction R α] [IsScalarTower R α α] (x : R) (v w : mα) :
        x v ⬝ᵥ w = x (v ⬝ᵥ w)

        Alias of smul_dotProduct.

        @[simp]
        theorem dotProduct_smul {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [Monoid R] [Mul α] [AddCommMonoid α] [DistribMulAction R α] [SMulCommClass R α α] (x : R) (v w : mα) :
        v ⬝ᵥ x w = x (v ⬝ᵥ w)
        @[deprecated dotProduct_smul]
        theorem Matrix.dotProduct_smul {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [Monoid R] [Mul α] [AddCommMonoid α] [DistribMulAction R α] [SMulCommClass R α α] (x : R) (v w : mα) :
        v ⬝ᵥ x w = x (v ⬝ᵥ w)

        Alias of dotProduct_smul.

        @[defaultInstance 100]
        instance Matrix.instHMulOfFintypeOfMulOfAddCommMonoid {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] :
        HMul (Matrix l m α) (Matrix m n α) (Matrix l n α)

        M * N is the usual product of matrices M and N, i.e. we have that (M * N) i k is the dot product of the i-th row of M by the k-th column of N. This is currently only defined when m is finite.

        Equations
        • Matrix.instHMulOfFintypeOfMulOfAddCommMonoid = { hMul := fun (M : Matrix l m α) (N : Matrix m n α) (i : l) (k : n) => (fun (j : m) => M i j) ⬝ᵥ fun (j : m) => N j k }
        theorem Matrix.mul_apply {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] {M : Matrix l m α} {N : Matrix m n α} {i : l} {k : n} :
        (M * N) i k = j : m, M i j * N j k
        instance Matrix.instMulOfFintypeOfAddCommMonoid {n : Type u_3} {α : Type v} [Fintype n] [Mul α] [AddCommMonoid α] :
        Mul (Matrix n n α)
        Equations
        • Matrix.instMulOfFintypeOfAddCommMonoid = { mul := fun (M N : Matrix n n α) => M * N }
        theorem Matrix.mul_apply' {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] {M : Matrix l m α} {N : Matrix m n α} {i : l} {k : n} :
        (M * N) i k = (fun (j : m) => M i j) ⬝ᵥ fun (j : m) => N j k
        theorem Matrix.two_mul_expl {R : Type u_10} [CommRing R] (A B : Matrix (Fin 2) (Fin 2) R) :
        (A * B) 0 0 = A 0 0 * B 0 0 + A 0 1 * B 1 0 (A * B) 0 1 = A 0 0 * B 0 1 + A 0 1 * B 1 1 (A * B) 1 0 = A 1 0 * B 0 0 + A 1 1 * B 1 0 (A * B) 1 1 = A 1 0 * B 0 1 + A 1 1 * B 1 1
        @[simp]
        theorem Matrix.smul_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [AddCommMonoid α] [Mul α] [Fintype n] [Monoid R] [DistribMulAction R α] [IsScalarTower R α α] (a : R) (M : Matrix m n α) (N : Matrix n l α) :
        a M * N = a (M * N)
        @[simp]
        theorem Matrix.mul_smul {l : Type u_1} {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [AddCommMonoid α] [Mul α] [Fintype n] [Monoid R] [DistribMulAction R α] [SMulCommClass R α α] (M : Matrix m n α) (a : R) (N : Matrix n l α) :
        M * a N = a (M * N)
        @[simp]
        theorem Matrix.mul_zero {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (M : Matrix m n α) :
        M * 0 = 0
        @[simp]
        theorem Matrix.zero_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix m n α) :
        0 * M = 0
        theorem Matrix.mul_add {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (L : Matrix m n α) (M N : Matrix n o α) :
        L * (M + N) = L * M + L * N
        theorem Matrix.add_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (L M : Matrix l m α) (N : Matrix m n α) :
        (L + M) * N = L * N + M * N
        Equations
        @[simp]
        theorem Matrix.diagonal_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (d : mα) (M : Matrix m n α) (i : m) (j : n) :
        (Matrix.diagonal d * M) i j = d i * M i j
        @[simp]
        theorem Matrix.mul_diagonal {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (d : nα) (M : Matrix m n α) (i : m) (j : n) :
        (M * Matrix.diagonal d) i j = M i j * d j
        @[simp]
        theorem Matrix.diagonal_mul_diagonal {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (d₁ d₂ : nα) :
        Matrix.diagonal d₁ * Matrix.diagonal d₂ = Matrix.diagonal fun (i : n) => d₁ i * d₂ i
        theorem Matrix.diagonal_mul_diagonal' {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (d₁ d₂ : nα) :
        Matrix.diagonal d₁ * Matrix.diagonal d₂ = Matrix.diagonal fun (i : n) => d₁ i * d₂ i
        theorem Matrix.smul_eq_diagonal_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (M : Matrix m n α) (a : α) :
        a M = (Matrix.diagonal fun (x : m) => a) * M
        theorem Matrix.op_smul_eq_mul_diagonal {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) (a : α) :
        MulOpposite.op a M = M * Matrix.diagonal fun (x : n) => a
        def Matrix.addMonoidHomMulLeft {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix l m α) :
        Matrix m n α →+ Matrix l n α

        Left multiplication by a matrix, as an AddMonoidHom from matrices to matrices.

        Equations
        • M.addMonoidHomMulLeft = { toFun := fun (x : Matrix m n α) => M * x, map_zero' := , map_add' := }
        Instances For
          @[simp]
          theorem Matrix.addMonoidHomMulLeft_apply {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix l m α) (x : Matrix m n α) :
          M.addMonoidHomMulLeft x = M * x
          def Matrix.addMonoidHomMulRight {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix m n α) :
          Matrix l m α →+ Matrix l n α

          Right multiplication by a matrix, as an AddMonoidHom from matrices to matrices.

          Equations
          • M.addMonoidHomMulRight = { toFun := fun (x : Matrix l m α) => x * M, map_zero' := , map_add' := }
          Instances For
            @[simp]
            theorem Matrix.addMonoidHomMulRight_apply {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix m n α) (x : Matrix l m α) :
            M.addMonoidHomMulRight x = x * M
            theorem Matrix.sum_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [NonUnitalNonAssocSemiring α] [Fintype m] (s : Finset β) (f : βMatrix l m α) (M : Matrix m n α) :
            (∑ as, f a) * M = as, f a * M
            theorem Matrix.mul_sum {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [NonUnitalNonAssocSemiring α] [Fintype m] (s : Finset β) (f : βMatrix m n α) (M : Matrix l m α) :
            M * as, f a = as, M * f a
            instance Matrix.Semiring.isScalarTower {n : Type u_3} {R : Type u_7} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [Monoid R] [DistribMulAction R α] [IsScalarTower R α α] :
            IsScalarTower R (Matrix n n α) (Matrix n n α)

            This instance enables use with smul_mul_assoc.

            instance Matrix.Semiring.smulCommClass {n : Type u_3} {R : Type u_7} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [Monoid R] [DistribMulAction R α] [SMulCommClass R α α] :
            SMulCommClass R (Matrix n n α) (Matrix n n α)

            This instance enables use with mul_smul_comm.

            @[simp]
            theorem Matrix.one_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (M : Matrix m n α) :
            1 * M = M
            @[simp]
            theorem Matrix.mul_one {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) :
            M * 1 = M
            instance Matrix.nonAssocSemiring {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype n] [DecidableEq n] :
            Equations
            @[simp]
            theorem Matrix.map_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} {β : Type w} [NonAssocSemiring α] [Fintype n] {L : Matrix m n α} {M : Matrix n o α} [NonAssocSemiring β] {f : α →+* β} :
            (L * M).map f = L.map f * M.map f
            theorem Matrix.smul_one_eq_diagonal {m : Type u_2} {α : Type v} [NonAssocSemiring α] [DecidableEq m] (a : α) :
            a 1 = Matrix.diagonal fun (x : m) => a
            theorem Matrix.op_smul_one_eq_diagonal {m : Type u_2} {α : Type v} [NonAssocSemiring α] [DecidableEq m] (a : α) :
            MulOpposite.op a 1 = Matrix.diagonal fun (x : m) => a
            theorem Matrix.mul_assoc {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalSemiring α] [Fintype m] [Fintype n] (L : Matrix l m α) (M : Matrix m n α) (N : Matrix n o α) :
            L * M * N = L * (M * N)
            instance Matrix.nonUnitalSemiring {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype n] :
            Equations
            instance Matrix.semiring {n : Type u_3} {α : Type v} [Semiring α] [Fintype n] [DecidableEq n] :
            Semiring (Matrix n n α)
            Equations
            • Matrix.semiring = Semiring.mk npowRecAuto
            @[simp]
            theorem Matrix.neg_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) :
            -M * N = -(M * N)
            @[simp]
            theorem Matrix.mul_neg {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) :
            M * -N = -(M * N)
            theorem Matrix.sub_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M M' : Matrix m n α) (N : Matrix n o α) :
            (M - M') * N = M * N - M' * N
            theorem Matrix.mul_sub {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M : Matrix m n α) (N N' : Matrix n o α) :
            M * (N - N') = M * N - M * N'
            Equations
            instance Matrix.instNonUnitalRing {n : Type u_3} {α : Type v} [Fintype n] [NonUnitalRing α] :
            Equations
            instance Matrix.instNonAssocRing {n : Type u_3} {α : Type v} [Fintype n] [DecidableEq n] [NonAssocRing α] :
            Equations
            instance Matrix.instRing {n : Type u_3} {α : Type v} [Fintype n] [DecidableEq n] [Ring α] :
            Ring (Matrix n n α)
            Equations
            • Matrix.instRing = Ring.mk SubNegMonoid.zsmul
            @[simp]
            theorem Matrix.mul_mul_left {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Semiring α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) (a : α) :
            (Matrix.of fun (i : m) (j : n) => a * M i j) * N = a (M * N)
            theorem Matrix.smul_eq_mul_diagonal {m : Type u_2} {n : Type u_3} {α : Type v} [CommSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) (a : α) :
            a M = M * Matrix.diagonal fun (x : n) => a
            @[simp]
            theorem Matrix.mul_mul_right {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [CommSemiring α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) (a : α) :
            (M * Matrix.of fun (i : n) (j : o) => a * N i j) = a (M * N)
            def Matrix.vecMulVec {m : Type u_2} {n : Type u_3} {α : Type v} [Mul α] (w : mα) (v : nα) :
            Matrix m n α

            For two vectors w and v, vecMulVec w v i j is defined to be w i * v j. Put another way, vecMulVec w v is exactly col w * row v.

            Equations
            Instances For
              theorem Matrix.vecMulVec_apply {m : Type u_2} {n : Type u_3} {α : Type v} [Mul α] (w : mα) (v : nα) (i : m) (j : n) :
              Matrix.vecMulVec w v i j = w i * v j
              def Matrix.mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (M : Matrix m n α) (v : nα) :
              mα

              M *ᵥ v (notation for mulVec M v) is the matrix-vector product of matrix M and vector v, where v is seen as a column vector. Put another way, M *ᵥ v is the vector whose entries are those of M * col v (see col_mulVec).

              The notation has precedence 73, which comes immediately before ⬝ᵥ for dotProduct, so that A *ᵥ v ⬝ᵥ B *ᵥ w is parsed as (A *ᵥ v) ⬝ᵥ (B *ᵥ w).

              Equations
              • M.mulVec v x✝ = (fun (j : n) => M x✝ j) ⬝ᵥ v
              Instances For

                M *ᵥ v (notation for mulVec M v) is the matrix-vector product of matrix M and vector v, where v is seen as a column vector. Put another way, M *ᵥ v is the vector whose entries are those of M * col v (see col_mulVec).

                The notation has precedence 73, which comes immediately before ⬝ᵥ for dotProduct, so that A *ᵥ v ⬝ᵥ B *ᵥ w is parsed as (A *ᵥ v) ⬝ᵥ (B *ᵥ w).

                Equations
                Instances For
                  def Matrix.vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (v : mα) (M : Matrix m n α) :
                  nα

                  v ᵥ* M (notation for vecMul v M) is the vector-matrix product of vector v and matrix M, where v is seen as a row vector. Put another way, v ᵥ* M is the vector whose entries are those of row v * M (see row_vecMul).

                  The notation has precedence 73, which comes immediately before ⬝ᵥ for dotProduct, so that v ᵥ* A ⬝ᵥ w ᵥ* B is parsed as (v ᵥ* A) ⬝ᵥ (w ᵥ* B).

                  Equations
                  Instances For

                    v ᵥ* M (notation for vecMul v M) is the vector-matrix product of vector v and matrix M, where v is seen as a row vector. Put another way, v ᵥ* M is the vector whose entries are those of row v * M (see row_vecMul).

                    The notation has precedence 73, which comes immediately before ⬝ᵥ for dotProduct, so that v ᵥ* A ⬝ᵥ w ᵥ* B is parsed as (v ᵥ* A) ⬝ᵥ (w ᵥ* B).

                    Equations
                    Instances For
                      def Matrix.mulVec.addMonoidHomLeft {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : nα) :
                      Matrix m n α →+ mα

                      Left multiplication by a matrix, as an AddMonoidHom from vectors to vectors.

                      Equations
                      Instances For
                        @[simp]
                        theorem Matrix.mulVec.addMonoidHomLeft_apply {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : nα) (M : Matrix m n α) (a✝ : m) :
                        (Matrix.mulVec.addMonoidHomLeft v) M a✝ = M.mulVec v a✝
                        theorem Matrix.mul_apply_eq_vecMul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A : Matrix m n α) (B : Matrix n o α) (i : m) :
                        (A * B) i = Matrix.vecMul (A i) B

                        The ith row of the multiplication is the same as the vecMul with the ith row of A.

                        theorem Matrix.mulVec_diagonal {m : Type u_2} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (v w : mα) (x : m) :
                        (Matrix.diagonal v).mulVec w x = v x * w x
                        theorem Matrix.vecMul_diagonal {m : Type u_2} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (v w : mα) (x : m) :
                        theorem Matrix.dotProduct_mulVec {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [Fintype m] [NonUnitalSemiring R] (v : mR) (A : Matrix m n R) (w : nR) :
                        v ⬝ᵥ A.mulVec w = Matrix.vecMul v A ⬝ᵥ w

                        Associate the dot product of mulVec to the left.

                        @[simp]
                        theorem Matrix.mulVec_zero {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A : Matrix m n α) :
                        A.mulVec 0 = 0
                        @[simp]
                        theorem Matrix.zero_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (A : Matrix m n α) :
                        @[simp]
                        theorem Matrix.zero_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : nα) :
                        @[simp]
                        theorem Matrix.vecMul_zero {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (v : mα) :
                        theorem Matrix.smul_mulVec_assoc {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [Monoid R] [DistribMulAction R α] [IsScalarTower R α α] (a : R) (A : Matrix m n α) (b : nα) :
                        (a A).mulVec b = a A.mulVec b
                        theorem Matrix.mulVec_add {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A : Matrix m n α) (x y : nα) :
                        A.mulVec (x + y) = A.mulVec x + A.mulVec y
                        theorem Matrix.add_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A B : Matrix m n α) (x : nα) :
                        (A + B).mulVec x = A.mulVec x + B.mulVec x
                        theorem Matrix.vecMul_add {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (A B : Matrix m n α) (x : mα) :
                        theorem Matrix.add_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (A : Matrix m n α) (x y : mα) :
                        theorem Matrix.vecMul_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [Monoid R] [NonUnitalNonAssocSemiring S] [DistribMulAction R S] [IsScalarTower R S S] (M : Matrix n m S) (b : R) (v : nS) :
                        theorem Matrix.mulVec_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [Monoid R] [NonUnitalNonAssocSemiring S] [DistribMulAction R S] [SMulCommClass R S S] (M : Matrix m n S) (b : R) (v : nS) :
                        M.mulVec (b v) = b M.mulVec v
                        @[simp]
                        theorem Matrix.mulVec_single {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (M : Matrix m n R) (j : n) (x : R) :
                        M.mulVec (Pi.single j x) = fun (i : m) => M i j * x
                        @[simp]
                        theorem Matrix.single_vecMul {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring R] (M : Matrix m n R) (i : m) (x : R) :
                        Matrix.vecMul (Pi.single i x) M = fun (j : n) => x * M i j
                        theorem Matrix.mulVec_single_one {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonAssocSemiring R] (M : Matrix m n R) (j : n) :
                        M.mulVec (Pi.single j 1) = M.transpose j
                        theorem Matrix.single_one_vecMul {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype m] [DecidableEq m] [NonAssocSemiring R] (i : m) (M : Matrix m n R) :
                        theorem Matrix.diagonal_mulVec_single {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (v : nR) (j : n) (x : R) :
                        (Matrix.diagonal v).mulVec (Pi.single j x) = Pi.single j (v j * x)
                        theorem Matrix.single_vecMul_diagonal {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (v : nR) (j : n) (x : R) :
                        @[simp]
                        theorem Matrix.vecMul_vecMul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalSemiring α] [Fintype n] [Fintype m] (v : mα) (M : Matrix m n α) (N : Matrix n o α) :
                        @[simp]
                        theorem Matrix.mulVec_mulVec {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalSemiring α] [Fintype n] [Fintype o] (v : oα) (M : Matrix m n α) (N : Matrix n o α) :
                        M.mulVec (N.mulVec v) = (M * N).mulVec v
                        theorem Matrix.mul_mul_apply {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype n] (A B C : Matrix n n α) (i j : n) :
                        (A * B * C) i j = A i ⬝ᵥ B.mulVec (C.transpose j)
                        theorem Matrix.mulVec_one {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype n] (A : Matrix m n α) :
                        A.mulVec 1 = fun (i : m) => j : n, A i j
                        theorem Matrix.vec_one_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype m] (A : Matrix m n α) :
                        Matrix.vecMul 1 A = fun (j : n) => i : m, A i j
                        @[simp]
                        theorem Matrix.one_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (v : mα) :
                        @[simp]
                        theorem Matrix.vecMul_one {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (v : mα) :
                        @[simp]
                        theorem Matrix.diagonal_const_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : α) (v : mα) :
                        (Matrix.diagonal fun (x_1 : m) => x).mulVec v = x v
                        @[simp]
                        theorem Matrix.vecMul_diagonal_const {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : α) (v : mα) :
                        Matrix.vecMul v (Matrix.diagonal fun (x_1 : m) => x) = MulOpposite.op x v
                        @[simp]
                        theorem Matrix.natCast_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                        (↑x).mulVec v = x v
                        @[simp]
                        theorem Matrix.vecMul_natCast {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                        @[simp]
                        theorem Matrix.ofNat_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) [x.AtLeastTwo] (v : mα) :
                        @[simp]
                        theorem Matrix.vecMul_ofNat {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) [x.AtLeastTwo] (v : mα) :
                        theorem Matrix.neg_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (v : mα) (A : Matrix m n α) :
                        theorem Matrix.vecMul_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (v : mα) (A : Matrix m n α) :
                        theorem Matrix.neg_vecMul_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (v : mα) (A : Matrix m n α) :
                        theorem Matrix.neg_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (v : nα) (A : Matrix m n α) :
                        (-A).mulVec v = -A.mulVec v
                        theorem Matrix.mulVec_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (v : nα) (A : Matrix m n α) :
                        A.mulVec (-v) = -A.mulVec v
                        theorem Matrix.neg_mulVec_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (v : nα) (A : Matrix m n α) :
                        (-A).mulVec (-v) = A.mulVec v
                        theorem Matrix.mulVec_sub {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (A : Matrix m n α) (x y : nα) :
                        A.mulVec (x - y) = A.mulVec x - A.mulVec y
                        theorem Matrix.sub_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (A B : Matrix m n α) (x : nα) :
                        (A - B).mulVec x = A.mulVec x - B.mulVec x
                        theorem Matrix.vecMul_sub {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (A B : Matrix m n α) (x : mα) :
                        theorem Matrix.sub_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (A : Matrix m n α) (x y : mα) :
                        theorem Matrix.mulVec_transpose {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalCommSemiring α] [Fintype m] (A : Matrix m n α) (x : mα) :
                        A.transpose.mulVec x = Matrix.vecMul x A
                        theorem Matrix.vecMul_transpose {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalCommSemiring α] [Fintype n] (A : Matrix m n α) (x : nα) :
                        Matrix.vecMul x A.transpose = A.mulVec x
                        theorem Matrix.mulVec_vecMul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalCommSemiring α] [Fintype n] [Fintype o] (A : Matrix m n α) (B : Matrix o n α) (x : oα) :
                        A.mulVec (Matrix.vecMul x B) = (A * B.transpose).mulVec x
                        theorem Matrix.vecMul_mulVec {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalCommSemiring α] [Fintype m] [Fintype n] (A : Matrix m n α) (B : Matrix m o α) (x : nα) :
                        Matrix.vecMul (A.mulVec x) B = Matrix.vecMul x (A.transpose * B)
                        theorem Matrix.mulVec_smul_assoc {m : Type u_2} {n : Type u_3} {α : Type v} [CommSemiring α] [Fintype n] (A : Matrix m n α) (b : nα) (a : α) :
                        A.mulVec (a b) = a A.mulVec b
                        @[simp]
                        theorem Matrix.intCast_mulVec {m : Type u_2} {α : Type v} [NonAssocRing α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                        (↑x).mulVec v = x v
                        @[simp]
                        theorem Matrix.vecMul_intCast {m : Type u_2} {α : Type v} [NonAssocRing α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                        @[simp]
                        theorem Matrix.transpose_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommMonoid α] [CommSemigroup α] [Fintype n] (M : Matrix m n α) (N : Matrix n l α) :
                        (M * N).transpose = N.transpose * M.transpose
                        theorem Matrix.submatrix_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [Mul α] [AddCommMonoid α] {p : Type u_10} {q : Type u_11} (M : Matrix m n α) (N : Matrix n p α) (e₁ : lm) (e₂ : on) (e₃ : qp) (he₂ : Function.Bijective e₂) :
                        (M * N).submatrix e₁ e₃ = M.submatrix e₁ e₂ * N.submatrix e₂ e₃

                        simp lemmas for Matrix.submatrixs interaction with Matrix.diagonal, 1, and Matrix.mul for when the mappings are bundled.

                        @[simp]
                        theorem Matrix.submatrix_mul_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [AddCommMonoid α] [Mul α] {p : Type u_10} {q : Type u_11} (M : Matrix m n α) (N : Matrix n p α) (e₁ : lm) (e₂ : o n) (e₃ : qp) :
                        M.submatrix e₁ e₂ * N.submatrix (⇑e₂) e₃ = (M * N).submatrix e₁ e₃
                        theorem Matrix.submatrix_mulVec_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : oα) (e₁ : lm) (e₂ : o n) :
                        (M.submatrix e₁ e₂).mulVec v = M.mulVec (v e₂.symm) e₁
                        @[simp]
                        theorem Matrix.submatrix_id_mul_left {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [Mul α] [AddCommMonoid α] {p : Type u_10} (M : Matrix m n α) (N : Matrix o p α) (e₁ : lm) (e₂ : n o) :
                        M.submatrix e₁ id * N.submatrix (⇑e₂) id = M.submatrix e₁ e₂.symm * N
                        @[simp]
                        theorem Matrix.submatrix_id_mul_right {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [Mul α] [AddCommMonoid α] {p : Type u_10} (M : Matrix m n α) (N : Matrix o p α) (e₁ : lp) (e₂ : o n) :
                        M.submatrix id e₂ * N.submatrix id e₁ = M * N.submatrix (⇑e₂.symm) e₁
                        theorem Matrix.submatrix_vecMul_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype l] [Fintype m] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : lα) (e₁ : l m) (e₂ : on) :
                        Matrix.vecMul v (M.submatrix (⇑e₁) e₂) = Matrix.vecMul (v e₁.symm) M e₂
                        theorem Matrix.mul_submatrix_one {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Finite o] [NonAssocSemiring α] [DecidableEq o] (e₁ : n o) (e₂ : lo) (M : Matrix m n α) :
                        M * Matrix.submatrix 1 (⇑e₁) e₂ = M.submatrix id (e₁.symm e₂)
                        theorem Matrix.one_submatrix_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype m] [Finite o] [NonAssocSemiring α] [DecidableEq o] (e₁ : lo) (e₂ : m o) (M : Matrix m n α) :
                        Matrix.submatrix 1 e₁ e₂ * M = M.submatrix (e₂.symm e₁) id
                        theorem Matrix.submatrix_mul_transpose_submatrix {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [AddCommMonoid α] [Mul α] (e : m n) (M : Matrix m n α) :
                        M.submatrix id e * M.transpose.submatrix (⇑e) id = M * M.transpose
                        theorem RingHom.map_matrix_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} {β : Type w} [Fintype n] [NonAssocSemiring α] [NonAssocSemiring β] (M : Matrix m n α) (N : Matrix n o α) (i : m) (j : o) (f : α →+* β) :
                        f ((M * N) i j) = (M.map f * N.map f) i j
                        theorem RingHom.map_dotProduct {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (v w : nR) :
                        f (v ⬝ᵥ w) = f v ⬝ᵥ f w
                        theorem RingHom.map_vecMul {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (M : Matrix n m R) (v : nR) (i : m) :
                        f (Matrix.vecMul v M i) = Matrix.vecMul (f v) (M.map f) i
                        theorem RingHom.map_mulVec {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (M : Matrix m n R) (v : nR) (i : m) :
                        f (M.mulVec v i) = (M.map f).mulVec (f v) i