Documentation

Mathlib.Data.Vector.Defs

The type List.Vector represents lists with fixed length.

def List.Vector (α : Type u) (n : ) :

Vector α n is the type of lists of length n with elements of type α.

Equations
Instances For
    Equations
    @[match_pattern]
    def List.Vector.nil {α : Type u_1} :

    The empty vector with elements of type α

    Equations
    • List.Vector.nil = [],
    Instances For
      @[match_pattern]
      def List.Vector.cons {α : Type u_1} {n : } :
      αList.Vector α nList.Vector α n.succ

      If a : α and l : Vector α n, then cons a l, is the vector of length n + 1 whose first element is a and with l as the rest of the list.

      Equations
      Instances For
        @[reducible]
        def List.Vector.length {α : Type u_1} {n : } :
        List.Vector α n

        The length of a vector.

        Equations
        • x✝.length = n
        Instances For
          def List.Vector.head {α : Type u_1} {n : } :
          List.Vector α n.succα

          The first element of a vector with length at least 1.

          Equations
          Instances For
            theorem List.Vector.head_cons {α : Type u_1} {n : } (a : α) (v : List.Vector α n) :
            (List.Vector.cons a v).head = a

            The head of a vector obtained by prepending is the element prepended.

            def List.Vector.tail {α : Type u_1} {n : } :
            List.Vector α nList.Vector α (n - 1)

            The tail of a vector, with an empty vector having empty tail.

            Equations
            Instances For
              theorem List.Vector.tail_cons {α : Type u_1} {n : } (a : α) (v : List.Vector α n) :
              (List.Vector.cons a v).tail = v

              The tail of a vector obtained by prepending is the vector prepended. to

              @[simp]
              theorem List.Vector.cons_head_tail {α : Type u_1} {n : } (v : List.Vector α n.succ) :
              List.Vector.cons v.head v.tail = v

              Prepending the head of a vector to its tail gives the vector.

              def List.Vector.toList {α : Type u_1} {n : } (v : List.Vector α n) :
              List α

              The list obtained from a vector.

              Equations
              • v.toList = v
              Instances For
                def List.Vector.get {α : Type u_1} {n : } (l : List.Vector α n) (i : Fin n) :
                α

                nth element of a vector, indexed by a Fin type.

                Equations
                Instances For
                  def List.Vector.append {α : Type u_1} {n m : } :
                  List.Vector α nList.Vector α mList.Vector α (n + m)

                  Appending a vector to another.

                  Equations
                  Instances For
                    def List.Vector.elim {α : Type u_5} {C : {n : } → List.Vector α nSort u} (H : (l : List α) → C l, ) {n : } (v : List.Vector α n) :
                    C v

                    Elimination rule for Vector.

                    Equations
                    Instances For
                      def List.Vector.map {α : Type u_1} {β : Type u_2} {n : } (f : αβ) :
                      List.Vector α nList.Vector β n

                      Map a vector under a function.

                      Equations
                      Instances For
                        @[simp]
                        theorem List.Vector.map_nil {α : Type u_1} {β : Type u_2} (f : αβ) :
                        List.Vector.map f List.Vector.nil = List.Vector.nil

                        A nil vector maps to a nil vector.

                        @[simp]
                        theorem List.Vector.map_cons {α : Type u_1} {β : Type u_2} {n : } (f : αβ) (a : α) (v : List.Vector α n) :

                        map is natural with respect to cons.

                        def List.Vector.pmap {α : Type u_1} {β : Type u_2} {n : } {p : αProp} (f : (a : α) → p aβ) (v : List.Vector α n) :
                        (∀ (x : α), x v.toListp x)List.Vector β n

                        Map a vector under a partial function.

                        Equations
                        Instances For
                          @[simp]
                          theorem List.Vector.pmap_nil {α : Type u_1} {β : Type u_2} {p : αProp} (f : (a : α) → p aβ) (hp : ∀ (x : α), x List.Vector.nil.toListp x) :
                          List.Vector.pmap f List.Vector.nil hp = List.Vector.nil
                          def List.Vector.map₂ {α : Type u_1} {β : Type u_2} {φ : Type u_4} {n : } (f : αβφ) :
                          List.Vector α nList.Vector β nList.Vector φ n

                          Mapping two vectors under a curried function of two variables.

                          Equations
                          Instances For
                            def List.Vector.replicate {α : Type u_1} (n : ) (a : α) :

                            Vector obtained by repeating an element.

                            Equations
                            Instances For
                              def List.Vector.drop {α : Type u_1} {n : } (i : ) :
                              List.Vector α nList.Vector α (n - i)

                              Drop i elements from a vector of length n; we can have i > n.

                              Equations
                              Instances For
                                def List.Vector.take {α : Type u_1} {n : } (i : ) :
                                List.Vector α nList.Vector α (min i n)

                                Take i elements from a vector of length n; we can have i > n.

                                Equations
                                Instances For
                                  def List.Vector.eraseIdx {α : Type u_1} {n : } (i : Fin n) :
                                  List.Vector α nList.Vector α (n - 1)

                                  Remove the element at position i from a vector of length n.

                                  Equations
                                  Instances For
                                    @[deprecated List.Vector.eraseIdx]
                                    def List.Vector.removeNth {α : Type u_1} {n : } (i : Fin n) :
                                    List.Vector α nList.Vector α (n - 1)

                                    Alias of List.Vector.eraseIdx.


                                    Remove the element at position i from a vector of length n.

                                    Equations
                                    Instances For
                                      def List.Vector.ofFn {α : Type u_1} {n : } :
                                      (Fin nα)List.Vector α n

                                      Vector of length n from a function on Fin n.

                                      Equations
                                      Instances For
                                        def List.Vector.congr {α : Type u_1} {n m : } (h : n = m) :
                                        List.Vector α nList.Vector α m

                                        Create a vector from another with a provably equal length.

                                        Equations
                                        Instances For
                                          def List.Vector.mapAccumr {α : Type u_1} {β : Type u_2} {σ : Type u_3} {n : } (f : ασσ × β) :
                                          List.Vector α nσσ × List.Vector β n

                                          Runs a function over a vector returning the intermediate results and a final result.

                                          Equations
                                          Instances For
                                            def List.Vector.mapAccumr₂ {α : Type u_1} {β : Type u_2} {σ : Type u_3} {φ : Type u_4} {n : } (f : αβσσ × φ) :
                                            List.Vector α nList.Vector β nσσ × List.Vector φ n

                                            Runs a function over a pair of vectors returning the intermediate results and a final result.

                                            Equations
                                            Instances For

                                              Shift Primitives #

                                              def List.Vector.shiftLeftFill {α : Type u_1} {n : } (v : List.Vector α n) (i : ) (fill : α) :

                                              shiftLeftFill v i is the vector obtained by left-shifting v i times and padding with the fill argument. If v.length < i then this will return replicate n fill.

                                              Equations
                                              Instances For
                                                def List.Vector.shiftRightFill {α : Type u_1} {n : } (v : List.Vector α n) (i : ) (fill : α) :

                                                shiftRightFill v i is the vector obtained by right-shifting v i times and padding with the fill argument. If v.length < i then this will return replicate n fill.

                                                Equations
                                                Instances For

                                                  Basic Theorems #

                                                  theorem List.Vector.eq {α : Type u_1} {n : } (a1 a2 : List.Vector α n) :
                                                  a1.toList = a2.toLista1 = a2

                                                  Vector is determined by the underlying list.

                                                  theorem List.Vector.eq_nil {α : Type u_1} (v : List.Vector α 0) :
                                                  v = List.Vector.nil

                                                  A vector of length 0 is a nil vector.

                                                  @[simp]
                                                  theorem List.Vector.toList_mk {α : Type u_1} {n : } (v : List α) (P : v.length = n) :
                                                  List.Vector.toList v, P = v

                                                  Vector of length from a list v with witness that v has length n maps to v under toList.

                                                  @[simp]
                                                  theorem List.Vector.toList_nil {α : Type u_1} :
                                                  List.Vector.nil.toList = []

                                                  A nil vector maps to a nil list.

                                                  @[simp]
                                                  theorem List.Vector.toList_length {α : Type u_1} {n : } (v : List.Vector α n) :
                                                  v.toList.length = n

                                                  The length of the list to which a vector of length n maps is n.

                                                  @[simp]
                                                  theorem List.Vector.toList_cons {α : Type u_1} {n : } (a : α) (v : List.Vector α n) :
                                                  (List.Vector.cons a v).toList = a :: v.toList

                                                  toList of cons of a vector and an element is the cons of the list obtained by toList and the element

                                                  @[simp]
                                                  theorem List.Vector.toList_append {α : Type u_1} {n m : } (v : List.Vector α n) (w : List.Vector α m) :
                                                  (v.append w).toList = v.toList ++ w.toList

                                                  Appending of vectors corresponds under toList to appending of lists.

                                                  @[simp]
                                                  theorem List.Vector.toList_drop {α : Type u_1} {n m : } (v : List.Vector α m) :
                                                  (List.Vector.drop n v).toList = List.drop n v.toList

                                                  drop of vectors corresponds under toList to drop of lists.

                                                  @[simp]
                                                  theorem List.Vector.toList_take {α : Type u_1} {n m : } (v : List.Vector α m) :
                                                  (List.Vector.take n v).toList = List.take n v.toList

                                                  take of vectors corresponds under toList to take of lists.

                                                  instance List.Vector.instGetElemNatLt {α : Type u_1} {n : } :
                                                  GetElem (List.Vector α n) α fun (x : List.Vector α n) (i : ) => i < n
                                                  Equations
                                                  • List.Vector.instGetElemNatLt = { getElem := fun (x : List.Vector α n) (i : ) (h : i < n) => x.get i, h }
                                                  theorem List.Vector.getElem_def {α : Type u_1} {n : } (v : List.Vector α n) (i : ) {hi : i < n} :
                                                  v[i] = v.toList[i]
                                                  theorem List.Vector.toList_getElem {α : Type u_1} {n : } (v : List.Vector α n) (i : ) {hi : i < v.toList.length} :
                                                  v.toList[i] = v[i]