The standard basis #
This file defines the standard basis Pi.basis (s : ∀ j, Basis (ι j) R (M j)),
which is the Σ j, ι j-indexed basis of Π j, M j. The basis vectors are given by
Pi.basis s ⟨j, i⟩ j' = Pi.single j' (s j) i = if j = j' then s i else 0.
The standard basis on R^η, i.e. η → R is called Pi.basisFun.
To give a concrete example, Pi.single (i : Fin 3) (1 : R)
gives the ith unit basis vector in R³, and Pi.basisFun R (Fin 3) proves
this is a basis over Fin 3 → R.
Main definitions #
Pi.basis s: given a basiss ifor eachM i, the standard basis onΠ i, M iPi.basisFun R η: the standard basis onR^η, i.e.η → R, given byPi.basisFun R η i j = Pi.single i 1 j = if i = j then 1 else 0.Matrix.stdBasis R n m: the standard basis onMatrix n m R, given byMatrix.stdBasis R n m (i, j) i' j' = if (i, j) = (i', j') then 1 else 0.
Pi.basis (s : ∀ j, Basis (ιs j) R (Ms j)) is the Σ j, ιs j-indexed basis on Π j, Ms j
given by s j on each component.
For the standard basis over R on the finite-dimensional space η → R see Pi.basisFun.
Equations
- Pi.basis s = { repr := (LinearEquiv.piCongrRight fun (j : η) => (s j).repr) ≪≫ₗ (Finsupp.sigmaFinsuppLEquivPiFinsupp R).symm }
Instances For
The basis on η → R where the ith basis vector is Function.update 0 i 1.
Equations
- Pi.basisFun R η = Module.Basis.ofEquivFun (LinearEquiv.refl R (η → R))
Instances For
Let k be an integral domain and G an arbitrary finite set.
Then any algebra morphism φ : (G → k) →ₐ[k] k is an evaluation map.
Alias of AlgHom.eq_piEvalAlgHom.
Let k be an integral domain and G an arbitrary finite set.
Then any algebra morphism φ : (G → k) →ₐ[k] k is an evaluation map.
The natural linear equivalence: Mⁱ ≃ Hom(Rⁱ, M) for an R-module M.
Equations
- Module.piEquiv ι R M = (Pi.basisFun R ι).constr R