Measurability of real and complex functions #
We show that most standard real and complex functions are measurable, notably exp, cos, sin,
cosh, sinh, log, pow, arcsin, arccos.
See also MeasureTheory.Function.SpecialFunctions.Arctan and
MeasureTheory.Function.SpecialFunctions.Inner, which have been split off to minimize imports.
theorem
Real.measurable_of_measurable_exp
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable fun (x : α) => exp (f x))
:
theorem
Real.aemeasurable_of_aemeasurable_exp
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
{μ : MeasureTheory.Measure α}
(hf : AEMeasurable (fun (x : α) => exp (f x)) μ)
:
AEMeasurable f μ
theorem
Real.aemeasurable_of_aemeasurable_exp_mul
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
{μ : MeasureTheory.Measure α}
{t : ℝ}
(ht : t ≠ 0)
(hf : AEMeasurable (fun (x : α) => exp (t * f x)) μ)
:
AEMeasurable f μ
theorem
Measurable.exp
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.exp (f x)
theorem
Measurable.log
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.log (f x)
theorem
Measurable.cos
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.cos (f x)
theorem
Measurable.sin
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.sin (f x)
theorem
Measurable.cosh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.cosh (f x)
theorem
Measurable.sinh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.sinh (f x)
theorem
Measurable.sqrt
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => √(f x)
theorem
AEMeasurable.exp
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.exp (f x)) μ
theorem
AEMeasurable.log
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.log (f x)) μ
theorem
AEMeasurable.cos
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.cos (f x)) μ
theorem
AEMeasurable.sin
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.sin (f x)) μ
theorem
AEMeasurable.cosh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.cosh (f x)) μ
theorem
AEMeasurable.sinh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.sinh (f x)) μ
theorem
AEMeasurable.sqrt
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => √(f x)) μ
theorem
Measurable.cexp
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.exp (f x)
theorem
Measurable.ccos
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.cos (f x)
theorem
Measurable.csin
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.sin (f x)
theorem
Measurable.ccosh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.cosh (f x)
theorem
Measurable.csinh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.sinh (f x)
theorem
Measurable.carg
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => (f x).arg
theorem
Measurable.clog
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.log (f x)
theorem
AEMeasurable.cexp
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.exp (f x)) μ
theorem
AEMeasurable.ccos
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.cos (f x)) μ
theorem
AEMeasurable.csin
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.sin (f x)) μ
theorem
AEMeasurable.ccosh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.cosh (f x)) μ
theorem
AEMeasurable.csinh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.sinh (f x)) μ
theorem
AEMeasurable.carg
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => (f x).arg) μ
theorem
AEMeasurable.clog
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.log (f x)) μ
theorem
Measurable.complex_ofReal
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => ↑(f x)
theorem
AEMeasurable.complex_ofReal
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => ↑(f x)) μ