Documentation

Mathlib.MeasureTheory.Integral.Lebesgue.Map

Behavior of the Lebesgue integral under maps #

theorem MeasureTheory.lintegral_map {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {f : βENNReal} {g : αβ} (hf : Measurable f) (hg : Measurable g) :
∫⁻ (a : β), f a Measure.map g μ = ∫⁻ (a : α), f (g a) μ
theorem MeasureTheory.lintegral_map' {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {f : βENNReal} {g : αβ} (hf : AEMeasurable f (Measure.map g μ)) (hg : AEMeasurable g μ) :
∫⁻ (a : β), f a Measure.map g μ = ∫⁻ (a : α), f (g a) μ
theorem MeasureTheory.lintegral_map_le {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} (f : βENNReal) (g : αβ) :
∫⁻ (a : β), f a Measure.map g μ ∫⁻ (a : α), f (g a) μ
theorem MeasureTheory.lintegral_comp {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {f : βENNReal} {g : αβ} (hf : Measurable f) (hg : Measurable g) :
lintegral μ (f g) = ∫⁻ (a : β), f a Measure.map g μ
theorem MeasureTheory.setLIntegral_map {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {f : βENNReal} {g : αβ} {s : Set β} (hs : MeasurableSet s) (hf : Measurable f) (hg : Measurable g) :
∫⁻ (y : β) in s, f y Measure.map g μ = ∫⁻ (x : α) in g ⁻¹' s, f (g x) μ
theorem MeasureTheory.lintegral_indicator_const_comp {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {f : αβ} {s : Set β} (hf : Measurable f) (hs : MeasurableSet s) (c : ENNReal) :
∫⁻ (a : α), s.indicator (fun (x : β) => c) (f a) μ = c * μ (f ⁻¹' s)
theorem MeasurableEmbedding.lintegral_map {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {g : αβ} (hg : MeasurableEmbedding g) (f : βENNReal) :
∫⁻ (a : β), f a MeasureTheory.Measure.map g μ = ∫⁻ (a : α), f (g a) μ

If g : α → β is a measurable embedding and f : β → ℝ≥0∞ is any function (not necessarily measurable), then ∫⁻ a, f a ∂(map g μ) = ∫⁻ a, f (g a) ∂μ. Compare with lintegral_map which applies to any measurable g : α → β but requires that f is measurable as well.

theorem MeasureTheory.lintegral_map_equiv {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} (f : βENNReal) (g : α ≃ᵐ β) :
∫⁻ (a : β), f a Measure.map (⇑g) μ = ∫⁻ (a : α), f (g a) μ

The lintegral transforms appropriately under a measurable equivalence g : α ≃ᵐ β. (Compare lintegral_map, which applies to a wider class of functions g : α → β, but requires measurability of the function being integrated.)

theorem MeasureTheory.lintegral_subtype_comap {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {s : Set α} (hs : MeasurableSet s) (f : αENNReal) :
∫⁻ (x : s), f x Measure.comap Subtype.val μ = ∫⁻ (x : α) in s, f x μ
theorem MeasureTheory.setLIntegral_subtype {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {s : Set α} (hs : MeasurableSet s) (t : Set s) (f : αENNReal) :
∫⁻ (x : s) in t, f x Measure.comap Subtype.val μ = ∫⁻ (x : α) in Subtype.val '' t, f x μ
theorem MeasureTheory.MeasurePreserving.lintegral_map_equiv {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} (f : βENNReal) (g : α ≃ᵐ β) (hg : MeasurePreserving (⇑g) μ ν) :
∫⁻ (a : β), f a ν = ∫⁻ (a : α), f (g a) μ
theorem MeasureTheory.MeasurePreserving.lintegral_comp {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} {g : αβ} (hg : MeasurePreserving g μ ν) {f : βENNReal} (hf : Measurable f) :
∫⁻ (a : α), f (g a) μ = ∫⁻ (b : β), f b ν
theorem MeasureTheory.MeasurePreserving.lintegral_comp_emb {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} {g : αβ} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : βENNReal) :
∫⁻ (a : α), f (g a) μ = ∫⁻ (b : β), f b ν
theorem MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} {g : αβ} (hg : MeasurePreserving g μ ν) {s : Set β} (hs : MeasurableSet s) {f : βENNReal} (hf : Measurable f) :
∫⁻ (a : α) in g ⁻¹' s, f (g a) μ = ∫⁻ (b : β) in s, f b ν
theorem MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage_emb {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} {g : αβ} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : βENNReal) (s : Set β) :
∫⁻ (a : α) in g ⁻¹' s, f (g a) μ = ∫⁻ (b : β) in s, f b ν
theorem MeasureTheory.MeasurePreserving.setLIntegral_comp_emb {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} {g : αβ} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : βENNReal) (s : Set α) :
∫⁻ (a : α) in s, f (g a) μ = ∫⁻ (b : β) in g '' s, f b ν