Documentation

Mathlib.MeasureTheory.Integral.Lebesgue.Markov

Markov's inequality #

The classical form of Markov's inequality states that for a nonnegative random variable X and real number ε > 0, P(X ≥ ε) ≤ E(X) / ε. Multiplying both sides by the measure of the space gives the measure-theoretic form:

μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε

This file proves a few variants of the inequality and other lemmas that depend on it.

theorem MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} (hle : f ≤ᶠ[ae μ] g) (hg : AEMeasurable g μ) (ε : ENNReal) :
∫⁻ (a : α), f a μ + ε * μ {x : α | f x + ε g x} ∫⁻ (a : α), g a μ

A version of Markov's inequality for two functions. It doesn't follow from the standard Markov's inequality because we only assume measurability of g, not f.

theorem MeasureTheory.mul_meas_ge_le_lintegral₀ {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) (ε : ENNReal) :
ε * μ {x : α | ε f x} ∫⁻ (a : α), f a μ

Markov's inequality also known as Chebyshev's first inequality.

theorem MeasureTheory.mul_meas_ge_le_lintegral {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : Measurable f) (ε : ENNReal) :
ε * μ {x : α | ε f x} ∫⁻ (a : α), f a μ

Markov's inequality also known as Chebyshev's first inequality. For a version assuming AEMeasurable, see mul_meas_ge_le_lintegral₀.

theorem MeasureTheory.meas_le_lintegral₀ {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) {s : Set α} (hs : xs, 1 f x) :
μ s ∫⁻ (a : α), f a μ
theorem MeasureTheory.lintegral_le_meas {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {s : Set α} {f : αENNReal} (hf : ∀ (a : α), f a 1) (h'f : as, f a = 0) :
∫⁻ (a : α), f a μ μ s
theorem MeasureTheory.setLIntegral_le_meas {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {s t : Set α} (hs : MeasurableSet s) {f : αENNReal} (hf : as, a tf a 1) (hf' : as, atf a = 0) :
∫⁻ (a : α) in s, f a μ μ t
theorem MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) (hμf : μ {x : α | f x = } 0) :
∫⁻ (x : α), f x μ =
theorem MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (hμf : μ {x : α | x s f x = } 0) :
∫⁻ (x : α) in s, f x μ =
theorem MeasureTheory.measure_eq_top_of_lintegral_ne_top {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) (hμf : ∫⁻ (x : α), f x μ ) :
μ {x : α | f x = } = 0
theorem MeasureTheory.measure_eq_top_of_setLintegral_ne_top {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (hμf : ∫⁻ (x : α) in s, f x μ ) :
μ {x : α | x s f x = } = 0
theorem MeasureTheory.meas_ge_le_lintegral_div {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) {ε : ENNReal} ( : ε 0) (hε' : ε ) :
μ {x : α | ε f x} (∫⁻ (a : α), f a μ) / ε

Markov's inequality, also known as Chebyshev's first inequality.

theorem MeasureTheory.ae_eq_of_ae_le_of_lintegral_le {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} (hfg : f ≤ᶠ[ae μ] g) (hf : ∫⁻ (x : α), f x μ ) (hg : AEMeasurable g μ) (hgf : ∫⁻ (x : α), g x μ ∫⁻ (x : α), f x μ) :
f =ᶠ[ae μ] g
theorem MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} (hg : AEMeasurable g μ) (hfi : ∫⁻ (x : α), f x μ ) (h_le : f ≤ᶠ[ae μ] g) (h : ∃ᵐ (x : α) μ, f x g x) :
∫⁻ (x : α), f x μ < ∫⁻ (x : α), g x μ
theorem MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} (hg : AEMeasurable g μ) (hfi : ∫⁻ (x : α), f x μ ) (h_le : f ≤ᶠ[ae μ] g) {s : Set α} (hμs : μ s 0) (h : ∀ᵐ (x : α) μ, x sf x < g x) :
∫⁻ (x : α), f x μ < ∫⁻ (x : α), g x μ
theorem MeasureTheory.lintegral_strict_mono {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} ( : μ 0) (hg : AEMeasurable g μ) (hfi : ∫⁻ (x : α), f x μ ) (h : ∀ᵐ (x : α) μ, f x < g x) :
∫⁻ (x : α), f x μ < ∫⁻ (x : α), g x μ
theorem MeasureTheory.setLIntegral_strict_mono {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} {s : Set α} (hsm : MeasurableSet s) (hs : μ s 0) (hg : Measurable g) (hfi : ∫⁻ (x : α) in s, f x μ ) (h : ∀ᵐ (x : α) μ, x sf x < g x) :
∫⁻ (x : α) in s, f x μ < ∫⁻ (x : α) in s, g x μ
theorem MeasureTheory.ae_lt_top' {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : AEMeasurable f μ) (h2f : ∫⁻ (x : α), f x μ ) :
∀ᵐ (x : α) μ, f x <
theorem MeasureTheory.ae_lt_top {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : Measurable f) (h2f : ∫⁻ (x : α), f x μ ) :
∀ᵐ (x : α) μ, f x <