Behavior of the Lebesgue integral under measure-preserving maps #
theorem
MeasureTheory.MeasurePreserving.lintegral_map_equiv
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : Measure α}
{ν : Measure β}
(f : β → ENNReal)
(g : α ≃ᵐ β)
(hg : MeasurePreserving (⇑g) μ ν)
:
theorem
MeasureTheory.MeasurePreserving.lintegral_comp
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : Measure α}
{ν : Measure β}
{g : α → β}
(hg : MeasurePreserving g μ ν)
{f : β → ENNReal}
(hf : Measurable f)
:
theorem
MeasureTheory.MeasurePreserving.lintegral_comp_emb
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : Measure α}
{ν : Measure β}
{g : α → β}
(hg : MeasurePreserving g μ ν)
(hge : MeasurableEmbedding g)
(f : β → ENNReal)
:
theorem
MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : Measure α}
{ν : Measure β}
{g : α → β}
(hg : MeasurePreserving g μ ν)
{s : Set β}
(hs : MeasurableSet s)
{f : β → ENNReal}
(hf : Measurable f)
:
theorem
MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage_emb
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : Measure α}
{ν : Measure β}
{g : α → β}
(hg : MeasurePreserving g μ ν)
(hge : MeasurableEmbedding g)
(f : β → ENNReal)
(s : Set β)
:
theorem
MeasureTheory.MeasurePreserving.setLIntegral_comp_emb
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : Measure α}
{ν : Measure β}
{g : α → β}
(hg : MeasurePreserving g μ ν)
(hge : MeasurableEmbedding g)
(f : β → ENNReal)
(s : Set α)
: