Documentation

Mathlib.MeasureTheory.Integral.Lebesgue.Sub

Subtraction of Lebesgue integrals #

In this file we first show that Lebesgue integrals can be subtracted with the expected results – ∫⁻ f - ∫⁻ g ≤ ∫⁻ (f - g), with equality if g ≤ f almost everywhere. Then we prove variants of the monotone convergence theorem that use this subtraction in their proofs.

theorem MeasureTheory.lintegral_sub' {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} (hg : AEMeasurable g μ) (hg_fin : ∫⁻ (a : α), g a μ ) (h_le : g ≤ᶠ[ae μ] f) :
∫⁻ (a : α), f a - g a μ = ∫⁻ (a : α), f a μ - ∫⁻ (a : α), g a μ
theorem MeasureTheory.lintegral_sub {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f g : αENNReal} (hg : Measurable g) (hg_fin : ∫⁻ (a : α), g a μ ) (h_le : g ≤ᶠ[ae μ] f) :
∫⁻ (a : α), f a - g a μ = ∫⁻ (a : α), f a μ - ∫⁻ (a : α), g a μ
theorem MeasureTheory.lintegral_sub_le' {α : Type u_1} [MeasurableSpace α] {μ : Measure α} (f g : αENNReal) (hf : AEMeasurable f μ) :
∫⁻ (x : α), g x μ - ∫⁻ (x : α), f x μ ∫⁻ (x : α), g x - f x μ
theorem MeasureTheory.lintegral_sub_le {α : Type u_1} [MeasurableSpace α] {μ : Measure α} (f g : αENNReal) (hf : Measurable f) :
∫⁻ (x : α), g x μ - ∫⁻ (x : α), f x μ ∫⁻ (x : α), g x - f x μ
theorem MeasureTheory.lintegral_iInf_ae {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (h_meas : ∀ (n : ), Measurable (f n)) (h_mono : ∀ (n : ), f n.succ ≤ᶠ[ae μ] f n) (h_fin : ∫⁻ (a : α), f 0 a μ ) :
∫⁻ (a : α), ⨅ (n : ), f n a μ = ⨅ (n : ), ∫⁻ (a : α), f n a μ

Monotone convergence theorem for nonincreasing sequences of functions.

theorem MeasureTheory.lintegral_iInf {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (h_meas : ∀ (n : ), Measurable (f n)) (h_anti : Antitone f) (h_fin : ∫⁻ (a : α), f 0 a μ ) :
∫⁻ (a : α), ⨅ (n : ), f n a μ = ⨅ (n : ), ∫⁻ (a : α), f n a μ

Monotone convergence theorem for nonincreasing sequences of functions.

theorem MeasureTheory.lintegral_iInf' {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (h_meas : ∀ (n : ), AEMeasurable (f n) μ) (h_anti : ∀ᵐ (a : α) μ, Antitone fun (i : ) => f i a) (h_fin : ∫⁻ (a : α), f 0 a μ ) :
∫⁻ (a : α), ⨅ (n : ), f n a μ = ⨅ (n : ), ∫⁻ (a : α), f n a μ
theorem MeasureTheory.lintegral_iInf_directed_of_measurable {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [Countable β] {f : βαENNReal} {μ : Measure α} ( : μ 0) (hf : ∀ (b : β), Measurable (f b)) (hf_int : ∀ (b : β), ∫⁻ (a : α), f b a μ ) (h_directed : Directed (fun (x1 x2 : αENNReal) => x1 x2) f) :
∫⁻ (a : α), ⨅ (b : β), f b a μ = ⨅ (b : β), ∫⁻ (a : α), f b a μ

Monotone convergence theorem for an infimum over a directed family and indexed by a countable type.

theorem MeasureTheory.lintegral_tendsto_of_tendsto_of_antitone {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} {F : αENNReal} (hf : ∀ (n : ), AEMeasurable (f n) μ) (h_anti : ∀ᵐ (x : α) μ, Antitone fun (n : ) => f n x) (h0 : ∫⁻ (a : α), f 0 a μ ) (h_tendsto : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (F x))) :
Filter.Tendsto (fun (n : ) => ∫⁻ (x : α), f n x μ) Filter.atTop (nhds (∫⁻ (x : α), F x μ))
theorem MeasureTheory.exists_setLintegral_compl_lt {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : ∫⁻ (a : α), f a μ ) {ε : ENNReal} ( : ε 0) :
∃ (s : Set α), MeasurableSet s μ s < ∫⁻ (a : α) in s, f a μ < ε

If f : α → ℝ≥0∞ has finite integral, then there exists a measurable set s of finite measure such that the integral of f over sᶜ is less than a given positive number.

Also used to prove an Lᵖ-norm version in MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_le.

theorem MeasureTheory.exists_measurable_le_setLintegral_eq_of_integrable {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : αENNReal} (hf : ∫⁻ (a : α), f a μ ) :
∃ (g : αENNReal), Measurable g g f ∀ (s : Set α), MeasurableSet s∫⁻ (a : α) in s, f a μ = ∫⁻ (a : α) in s, g a μ

For any function f : α → ℝ≥0∞, there exists a measurable function g ≤ f with the same integral over any measurable set.