Documentation

Mathlib.Order.CompleteLattice.Chain

Hausdorff's maximality principle #

This file proves Hausdorff's maximality principle.

Main declarations #

Notes #

Originally ported from Isabelle/HOL. The original file was written by Jacques D. Fleuriot, Tobias Nipkow, Christian Sternagel.

inductive ChainClosure {α : Type u_1} (r : ααProp) :
Set αProp

Predicate for whether a set is reachable from using SuccChain and ⋃₀.

Instances For
    def maxChain {α : Type u_1} (r : ααProp) :
    Set α

    An explicit maximal chain. maxChain is taken to be the union of all sets in ChainClosure.

    Equations
    Instances For
      theorem chainClosure_empty {α : Type u_1} {r : ααProp} :
      theorem chainClosure_maxChain {α : Type u_1} {r : ααProp} :
      theorem ChainClosure.total {α : Type u_1} {r : ααProp} {c₁ c₂ : Set α} (hc₁ : ChainClosure r c₁) (hc₂ : ChainClosure r c₂) :
      c₁ c₂ c₂ c₁
      theorem ChainClosure.succ_fixpoint {α : Type u_1} {r : ααProp} {c₁ c₂ : Set α} (hc₁ : ChainClosure r c₁) (hc₂ : ChainClosure r c₂) (hc : SuccChain r c₂ = c₂) :
      c₁ c₂
      theorem ChainClosure.succ_fixpoint_iff {α : Type u_1} {r : ααProp} {c : Set α} (hc : ChainClosure r c) :
      theorem ChainClosure.isChain {α : Type u_1} {r : ααProp} {c : Set α} (hc : ChainClosure r c) :
      theorem maxChain_spec {α : Type u_1} {r : ααProp} :

      Hausdorff's maximality principle

      There exists a maximal totally ordered set of α. Note that we do not require α to be partially ordered by r.