Documentation

Mathlib.RingTheory.Ideal.MinimalPrime.Basic

Minimal primes #

We provide various results concerning the minimal primes above an ideal.

Main results #

Further results that need the theory of localizations can be found in RingTheory/Ideal/Minimal/Localization.lean.

def Ideal.minimalPrimes {R : Type u_1} [CommSemiring R] (I : Ideal R) :

I.minimalPrimes is the set of ideals that are minimal primes over I.

Equations
Instances For
    def minimalPrimes (R : Type u_1) [CommSemiring R] :

    minimalPrimes R is the set of minimal primes of R. This is defined as Ideal.minimalPrimes.

    Equations
    Instances For
      theorem Ideal.exists_minimalPrimes_le {R : Type u_1} [CommSemiring R] {I J : Ideal R} [J.IsPrime] (e : I J) :
      pI.minimalPrimes, p J
      theorem Ideal.map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommRing S] [Algebra R S] {I p : Ideal R} {P : Ideal S} [P.IsPrime] [P.LiesOver p] (hI : p I.minimalPrimes) {J : Ideal S} (hJP : J P) (hJ : map (Quotient.mk (map (algebraMap R S) p)) P (map (Quotient.mk (map (algebraMap R S) p)) J).minimalPrimes) :
      P (map (algebraMap R S) IJ).minimalPrimes

      If P lies over p, p is a minimal prime over I and the image of P is a minimal prime over the image of J in S ⧸ p S, then P is a minimal prime over I S ⊔ J.