Minimal primes #
We provide various results concerning the minimal primes above an ideal.
Main results #
Ideal.minimalPrimes:I.minimalPrimesis the set of ideals that are minimal primes overI.minimalPrimes:minimalPrimes Ris the set of minimal primes ofR.Ideal.exists_minimalPrimes_le: Every prime ideal overIcontains a minimal prime overI.Ideal.radical_minimalPrimes: The minimal primes overI.radicalare precisely the minimal primes overI.Ideal.sInf_minimalPrimes: The intersection of minimal primes overIisI.radical.
Further results that need the theory of localizations can be found in
RingTheory/Ideal/Minimal/Localization.lean.
I.minimalPrimes is the set of ideals that are minimal primes over I.
Instances For
minimalPrimes R is the set of minimal primes of R.
This is defined as Ideal.minimalPrimes ⊥.
Equations
Instances For
theorem
Ideal.minimalPrimes_isPrime
{R : Type u_1}
[CommSemiring R]
{I p : Ideal R}
(h : p ∈ I.minimalPrimes)
:
p.IsPrime
theorem
Ideal.exists_minimalPrimes_le
{R : Type u_1}
[CommSemiring R]
{I J : Ideal R}
[J.IsPrime]
(e : I ≤ J)
:
∃ p ∈ I.minimalPrimes, p ≤ J
theorem
Ideal.eq_bot_of_minimalPrimes_eq_empty
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(h : I.minimalPrimes = ∅)
:
@[simp]
@[simp]
theorem
Ideal.minimalPrimes_eq_subsingleton_self
{R : Type u_1}
[CommRing R]
{I : Ideal R}
[I.IsPrime]
:
theorem
Ideal.map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{S : Type u_2}
[CommRing S]
[Algebra R S]
{I p : Ideal R}
{P : Ideal S}
[P.IsPrime]
[P.LiesOver p]
(hI : p ∈ I.minimalPrimes)
{J : Ideal S}
(hJP : J ≤ P)
(hJ : map (Quotient.mk (map (algebraMap R S) p)) P ∈ (map (Quotient.mk (map (algebraMap R S) p)) J).minimalPrimes)
:
If P lies over p, p is a minimal prime over I and the image of P is
a minimal prime over the image of J in S ⧸ p S, then P is a minimal prime
over I S ⊔ J.