Localization over left Ore sets. #
This file proves results on the localization of rings (monoids with zeros) over a left Ore set.
References #
- https://ncatlab.org/nlab/show/Ore+localization
- [Zoran Škoda, Noncommutative localization in noncommutative geometry][skoda2006]
Tags #
localization, Ore, non-commutative
@[simp]
theorem
OreLocalization.zero_oreDiv'
{R : Type u_1}
[MonoidWithZero R]
{S : Submonoid R}
[OreLocalization.OreSet S]
(s : ↥S)
:
instance
OreLocalization.instMonoidWithZero
{R : Type u_1}
[MonoidWithZero R]
{S : Submonoid R}
[OreLocalization.OreSet S]
:
Equations
- OreLocalization.instMonoidWithZero = MonoidWithZero.mk ⋯ ⋯
instance
OreLocalization.instCommMonoidWithZero
{R : Type u_1}
[CommMonoidWithZero R]
{S : Submonoid R}
[OreLocalization.OreSet S]
:
Equations
- OreLocalization.instCommMonoidWithZero = CommMonoidWithZero.mk ⋯ ⋯
instance
OreLocalization.instAdd
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
:
Add (OreLocalization S X)
Equations
- OreLocalization.instAdd = { add := OreLocalization.add✝ }
theorem
OreLocalization.oreDiv_add_oreDiv
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
{r r' : X}
{s s' : ↥S}
:
r /ₒ s + r' /ₒ s' = (OreLocalization.oreDenom (↑s) s' • r + OreLocalization.oreNum (↑s) s' • r') /ₒ (OreLocalization.oreDenom (↑s) s' * s)
theorem
OreLocalization.oreDiv_add_char
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
{r r' : X}
(s s' : ↥S)
(rb : R)
(sb : ↥S)
(h : ↑sb * ↑s = rb * ↑s')
:
A characterization of the addition on the Ore localizaion, allowing for arbitrary Ore numerator and Ore denominator.
def
OreLocalization.oreDivAddChar'
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(r r' : X)
(s s' : ↥S)
:
Another characterization of the addition on the Ore localization, bundling up all witnesses and conditions into a sigma type.
Equations
- OreLocalization.oreDivAddChar' r r' s s' = ⟨OreLocalization.oreNum (↑s) s', ⟨OreLocalization.oreDenom (↑s) s', ⋯⟩⟩
Instances For
@[simp]
theorem
OreLocalization.add_oreDiv
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
{r r' : X}
{s : ↥S}
:
theorem
OreLocalization.add_assoc
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(x y z : OreLocalization S X)
:
@[simp]
theorem
OreLocalization.zero_oreDiv
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(s : ↥S)
:
theorem
OreLocalization.zero_add
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(x : OreLocalization S X)
:
theorem
OreLocalization.add_zero
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(x : OreLocalization S X)
:
instance
OreLocalization.instAddMonoid
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
:
AddMonoid (OreLocalization S X)
Equations
- OreLocalization.instAddMonoid = AddMonoid.mk ⋯ ⋯ OreLocalization.nsmul✝ ⋯ ⋯
theorem
OreLocalization.smul_zero
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(x : OreLocalization S R)
:
theorem
OreLocalization.smul_add
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
(z : OreLocalization S R)
(x y : OreLocalization S X)
:
instance
OreLocalization.instDistribMulAction
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
:
DistribMulAction (OreLocalization S R) (OreLocalization S X)
Equations
- OreLocalization.instDistribMulAction = DistribMulAction.mk ⋯ ⋯
instance
OreLocalization.instDistribMulActionOfIsScalarTower
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddMonoid X]
[DistribMulAction R X]
{R₀ : Type u_3}
[Monoid R₀]
[MulAction R₀ X]
[MulAction R₀ R]
[IsScalarTower R₀ R X]
[IsScalarTower R₀ R R]
:
DistribMulAction R₀ (OreLocalization S X)
Equations
- OreLocalization.instDistribMulActionOfIsScalarTower = DistribMulAction.mk ⋯ ⋯
theorem
OreLocalization.add_comm
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddCommMonoid X]
[DistribMulAction R X]
(x y : OreLocalization S X)
:
instance
OreLocalization.instAddCommMonoidOreLocalization
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddCommMonoid X]
[DistribMulAction R X]
:
AddCommMonoid (OreLocalization S X)
Equations
- OreLocalization.instAddCommMonoidOreLocalization = AddCommMonoid.mk ⋯
@[irreducible]
def
OreLocalization.neg
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddGroup X]
[DistribMulAction R X]
:
OreLocalization S X → OreLocalization S X
Negation on the Ore localization is defined via negation on the numerator.
Equations
- OreLocalization.neg = OreLocalization.liftExpand (fun (r : X) (s : ↥S) => -r /ₒ s) ⋯
Instances For
instance
OreLocalization.instNegOreLocalization
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddGroup X]
[DistribMulAction R X]
:
Neg (OreLocalization S X)
Equations
- OreLocalization.instNegOreLocalization = { neg := OreLocalization.neg }
@[simp]
theorem
OreLocalization.neg_def
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddGroup X]
[DistribMulAction R X]
(r : X)
(s : ↥S)
:
theorem
OreLocalization.neg_add_cancel
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddGroup X]
[DistribMulAction R X]
(x : OreLocalization S X)
:
@[irreducible]
def
OreLocalization.zsmul
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddGroup X]
[DistribMulAction R X]
:
ℤ → OreLocalization S X → OreLocalization S X
Equations
- OreLocalization.zsmul = zsmulRec
Instances For
instance
OreLocalization.instAddGroupOreLocalization
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddGroup X]
[DistribMulAction R X]
:
AddGroup (OreLocalization S X)
Equations
- OreLocalization.instAddGroupOreLocalization = AddGroup.mk ⋯
instance
OreLocalization.instAddCommGroup
{R : Type u_1}
[Monoid R]
{S : Submonoid R}
[OreLocalization.OreSet S]
{X : Type u_2}
[AddCommGroup X]
[DistribMulAction R X]
:
AddCommGroup (OreLocalization S X)
Equations
- OreLocalization.instAddCommGroup = AddCommGroup.mk ⋯