Infinite sum or product in an order #
This file provides lemmas about the interaction of infinite sums and products and order operations.
Alias of Summable.tsum_le_of_sum_range_le
.
Alias of Multipliable.tprod_le_of_prod_range_le
.
Alias of Summable.tsum_le_tsum_of_inj
.
Alias of Multipliable.tprod_le_tprod_of_inj
.
Alias of Summable.tsum_subtype_le
.
Alias of Multipliable.tprod_subtype_le
.
Alias of Summable.sum_le_tsum
.
Alias of Multipliable.prod_le_tprod
.
Alias of Summable.le_tsum
.
Alias of Multipliable.le_tprod
.
Alias of Summable.tsum_le_tsum
.
Alias of Multipliable.tprod_le_tprod
.
Alias of Summable.tsum_mono
.
Alias of Multipliable.tprod_mono
.
Alias of Summable.tsum_le_of_sum_le
.
Alias of Multipliable.tprod_le_of_prod_le
.
Alias of Summable.tsum_lt_tsum
.
Alias of Multipliable.tprod_lt_tprod
.
Alias of Summable.tsum_strict_mono
.
Alias of Multipliable.tprod_strict_mono
.
Alias of Summable.tsum_pos
.
Alias of Multipliable.one_lt_tprod
.
Alias of Summable.le_tsum'
.
Alias of Multipliable.le_tprod'
.
Alias of Summable.tsum_eq_zero_iff
.
Alias of Multipliable.tprod_eq_one_iff
.
Alias of Summable.tsum_ne_zero_iff
.
Alias of Multipliable.tprod_ne_one_iff
.
For infinite sums taking values in a linearly ordered monoid, the existence of a least upper bound for the finite sums is a criterion for summability.
This criterion is useful when applied in a linearly ordered monoid which is also a complete or
conditionally complete linear order, such as ℝ
, ℝ≥0
, ℝ≥0∞
, because it is then easy to check
the existence of a least upper bound.
Alias of the forward direction of summable_abs_iff
.
Alias of the reverse direction of summable_abs_iff
.
Alias of Multipliable.abs_tprod
.
Positivity extension for infinite sums.
This extension only proves non-negativity, strict positivity is more delicate for infinite sums and requires more assumptions.