Documentation

Mathlib.Topology.Closure

Interior, closure and frontier of a set #

This file provides lemmas relating to the functions interior, closure and frontier of a set endowed with a topology.

Notation #

Tags #

interior, closure, frontier

theorem mem_interior {X : Type u} [TopologicalSpace X] {x : X} {s : Set X} :
x interior s ts, IsOpen t x t
@[simp]
theorem isOpen_interior {X : Type u} [TopologicalSpace X] {s : Set X} :
theorem interior_subset {X : Type u} [TopologicalSpace X] {s : Set X} :
theorem interior_maximal {X : Type u} [TopologicalSpace X] {s t : Set X} (h₁ : t s) (h₂ : IsOpen t) :
theorem IsOpen.interior_eq {X : Type u} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :
theorem IsOpen.subset_interior_iff {X : Type u} [TopologicalSpace X] {s t : Set X} (h₁ : IsOpen s) :
theorem subset_interior_iff {X : Type u} [TopologicalSpace X] {s t : Set X} :
t interior s ∃ (U : Set X), IsOpen U t U U s
theorem interior_subset_iff {X : Type u} [TopologicalSpace X] {s t : Set X} :
interior s t ∀ (U : Set X), IsOpen UU sU t
theorem interior_mono {X : Type u} [TopologicalSpace X] {s t : Set X} (h : s t) :
@[simp]
@[simp]
@[simp]
theorem interior_inter {X : Type u} [TopologicalSpace X] {s t : Set X} :
theorem Set.Finite.interior_biInter {X : Type u} [TopologicalSpace X] {ι : Type u_1} {s : Set ι} (hs : s.Finite) (f : ιSet X) :
interior (⋂ is, f i) = is, interior (f i)
theorem Set.Finite.interior_sInter {X : Type u} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) :
interior (⋂₀ S) = sS, interior s
@[simp]
theorem Finset.interior_iInter {X : Type u} [TopologicalSpace X] {ι : Type u_1} (s : Finset ι) (f : ιSet X) :
interior (⋂ is, f i) = is, interior (f i)
@[simp]
theorem interior_iInter_of_finite {X : Type u} [TopologicalSpace X] {ι : Sort v} [Finite ι] (f : ιSet X) :
interior (⋂ (i : ι), f i) = ⋂ (i : ι), interior (f i)
@[simp]
theorem interior_iInter₂_lt_nat {X : Type u} [TopologicalSpace X] {n : } (f : Set X) :
interior (⋂ (m : ), ⋂ (_ : m < n), f m) = ⋂ (m : ), ⋂ (_ : m < n), interior (f m)
@[simp]
theorem interior_iInter₂_le_nat {X : Type u} [TopologicalSpace X] {n : } (f : Set X) :
interior (⋂ (m : ), ⋂ (_ : m n), f m) = ⋂ (m : ), ⋂ (_ : m n), interior (f m)
theorem isOpen_iff_forall_mem_open {X : Type u} [TopologicalSpace X] {s : Set X} :
IsOpen s xs, ts, IsOpen t x t
theorem interior_iInter_subset {X : Type u} [TopologicalSpace X] {ι : Sort v} (s : ιSet X) :
interior (⋂ (i : ι), s i) ⋂ (i : ι), interior (s i)
theorem interior_iInter₂_subset {X : Type u} [TopologicalSpace X] {ι : Sort v} (p : ιSort u_1) (s : (i : ι) → p iSet X) :
interior (⋂ (i : ι), ⋂ (j : p i), s i j) ⋂ (i : ι), ⋂ (j : p i), interior (s i j)
theorem interior_sInter_subset {X : Type u} [TopologicalSpace X] (S : Set (Set X)) :
interior (⋂₀ S) sS, interior s
theorem Filter.HasBasis.lift'_interior {X : Type u} [TopologicalSpace X] {ι : Sort v} {l : Filter X} {p : ιProp} {s : ιSet X} (h : l.HasBasis p s) :
(l.lift' interior).HasBasis p fun (i : ι) => interior (s i)
theorem Filter.HasBasis.lift'_interior_eq_self {X : Type u} [TopologicalSpace X] {ι : Sort v} {l : Filter X} {p : ιProp} {s : ιSet X} (h : l.HasBasis p s) (ho : ∀ (i : ι), p iIsOpen (s i)) :
@[simp]
theorem isClosed_closure {X : Type u} [TopologicalSpace X] {s : Set X} :
theorem subset_closure {X : Type u} [TopologicalSpace X] {s : Set X} :
theorem not_mem_of_not_mem_closure {X : Type u} [TopologicalSpace X] {s : Set X} {P : X} (hP : Pclosure s) :
Ps
theorem closure_minimal {X : Type u} [TopologicalSpace X] {s t : Set X} (h₁ : s t) (h₂ : IsClosed t) :
theorem Disjoint.closure_left {X : Type u} [TopologicalSpace X] {s t : Set X} (hd : Disjoint s t) (ht : IsOpen t) :
theorem Disjoint.closure_right {X : Type u} [TopologicalSpace X] {s t : Set X} (hd : Disjoint s t) (hs : IsOpen s) :
@[simp]
theorem IsClosed.closure_eq {X : Type u} [TopologicalSpace X] {s : Set X} (h : IsClosed s) :
theorem IsClosed.closure_subset {X : Type u} [TopologicalSpace X] {s : Set X} (hs : IsClosed s) :
theorem IsClosed.closure_subset_iff {X : Type u} [TopologicalSpace X] {s t : Set X} (h₁ : IsClosed t) :
closure s t s t
theorem IsClosed.mem_iff_closure_subset {X : Type u} [TopologicalSpace X] {x : X} {s : Set X} (hs : IsClosed s) :
theorem closure_mono {X : Type u} [TopologicalSpace X] {s t : Set X} (h : s t) :
@[simp]
theorem closure_empty_iff {X : Type u} [TopologicalSpace X] (s : Set X) :
@[simp]

Alias of the reverse direction of closure_nonempty_iff.

Alias of the forward direction of closure_nonempty_iff.

@[simp]
theorem closure_union {X : Type u} [TopologicalSpace X] {s t : Set X} :
theorem Set.Finite.closure_biUnion {X : Type u} [TopologicalSpace X] {ι : Type u_1} {s : Set ι} (hs : s.Finite) (f : ιSet X) :
closure (⋃ is, f i) = is, closure (f i)
theorem Set.Finite.closure_sUnion {X : Type u} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) :
closure (⋃₀ S) = sS, closure s
@[simp]
theorem Finset.closure_biUnion {X : Type u} [TopologicalSpace X] {ι : Type u_1} (s : Finset ι) (f : ιSet X) :
closure (⋃ is, f i) = is, closure (f i)
@[simp]
theorem closure_iUnion_of_finite {X : Type u} [TopologicalSpace X] {ι : Sort v} [Finite ι] (f : ιSet X) :
closure (⋃ (i : ι), f i) = ⋃ (i : ι), closure (f i)
@[simp]
theorem closure_iUnion₂_lt_nat {X : Type u} [TopologicalSpace X] {n : } (f : Set X) :
closure (⋃ (m : ), ⋃ (_ : m < n), f m) = ⋃ (m : ), ⋃ (_ : m < n), closure (f m)
@[simp]
theorem closure_iUnion₂_le_nat {X : Type u} [TopologicalSpace X] {n : } (f : Set X) :
closure (⋃ (m : ), ⋃ (_ : m n), f m) = ⋃ (m : ), ⋃ (_ : m n), closure (f m)
@[simp]
theorem interior_compl {X : Type u} [TopologicalSpace X] {s : Set X} :
@[simp]
theorem closure_compl {X : Type u} [TopologicalSpace X] {s : Set X} :
theorem mem_closure_iff {X : Type u} [TopologicalSpace X] {x : X} {s : Set X} :
x closure s ∀ (o : Set X), IsOpen ox o(o s).Nonempty
theorem Filter.HasBasis.lift'_closure {X : Type u} [TopologicalSpace X] {ι : Sort v} {l : Filter X} {p : ιProp} {s : ιSet X} (h : l.HasBasis p s) :
(l.lift' closure).HasBasis p fun (i : ι) => closure (s i)
theorem Filter.HasBasis.lift'_closure_eq_self {X : Type u} [TopologicalSpace X] {ι : Sort v} {l : Filter X} {p : ιProp} {s : ιSet X} (h : l.HasBasis p s) (hc : ∀ (i : ι), p iIsClosed (s i)) :
theorem Dense.closure_eq {X : Type u} [TopologicalSpace X] {s : Set X} :

Alias of the forward direction of dense_iff_closure_eq.

theorem Dense.interior_compl {X : Type u} [TopologicalSpace X] {s : Set X} (h : Dense s) :
@[simp]
theorem dense_closure {X : Type u} [TopologicalSpace X] {s : Set X} :

The closure of a set s is dense if and only if s is dense.

theorem Dense.closure {X : Type u} [TopologicalSpace X] {s : Set X} :
Dense sDense (closure s)

Alias of the reverse direction of dense_closure.


The closure of a set s is dense if and only if s is dense.

theorem Dense.of_closure {X : Type u} [TopologicalSpace X] {s : Set X} :
Dense (closure s)Dense s

Alias of the forward direction of dense_closure.


The closure of a set s is dense if and only if s is dense.

@[simp]
theorem dense_iff_inter_open {X : Type u} [TopologicalSpace X] {s : Set X} :
Dense s ∀ (U : Set X), IsOpen UU.Nonempty(U s).Nonempty

A set is dense if and only if it has a nonempty intersection with each nonempty open set.

theorem Dense.inter_open_nonempty {X : Type u} [TopologicalSpace X] {s : Set X} :
Dense s∀ (U : Set X), IsOpen UU.Nonempty(U s).Nonempty

Alias of the forward direction of dense_iff_inter_open.


A set is dense if and only if it has a nonempty intersection with each nonempty open set.

theorem Dense.exists_mem_open {X : Type u} [TopologicalSpace X] {s : Set X} (hs : Dense s) {U : Set X} (ho : IsOpen U) (hne : U.Nonempty) :
xs, x U
theorem Dense.nonempty_iff {X : Type u} [TopologicalSpace X] {s : Set X} (hs : Dense s) :
theorem Dense.nonempty {X : Type u} [TopologicalSpace X] {s : Set X} [h : Nonempty X] (hs : Dense s) :
theorem Dense.mono {X : Type u} [TopologicalSpace X] {s₁ s₂ : Set X} (h : s₁ s₂) (hd : Dense s₁) :
Dense s₂

Complement to a singleton is dense if and only if the singleton is not an open set.

theorem Dense.induction {X : Type u} [TopologicalSpace X] {s : Set X} (hs : Dense s) {P : XProp} (mem : xs, P x) (isClosed : IsClosed {x : X | P x}) (x : X) :
P x

If a closed property holds for a dense subset, it holds for the whole space.

@[simp]

Interior and frontier are disjoint.

@[simp]
@[simp]
theorem self_diff_frontier {X : Type u} [TopologicalSpace X] (s : Set X) :
theorem IsClosed.frontier_subset {X : Type u} [TopologicalSpace X] {s : Set X} :

Alias of the reverse direction of frontier_subset_iff_isClosed.

@[simp]
theorem frontier_compl {X : Type u} [TopologicalSpace X] (s : Set X) :

The complement of a set has the same frontier as the original set.

theorem IsClosed.frontier_eq {X : Type u} [TopologicalSpace X] {s : Set X} (hs : IsClosed s) :
theorem IsOpen.frontier_eq {X : Type u} [TopologicalSpace X] {s : Set X} (hs : IsOpen s) :
theorem IsOpen.inter_frontier_eq {X : Type u} [TopologicalSpace X] {s : Set X} (hs : IsOpen s) :
theorem isClosed_frontier {X : Type u} [TopologicalSpace X] {s : Set X} :

The frontier of a set is closed.

theorem interior_frontier {X : Type u} [TopologicalSpace X] {s : Set X} (h : IsClosed s) :

The frontier of a closed set has no interior point.

theorem Disjoint.frontier_left {X : Type u} [TopologicalSpace X] {s t : Set X} (ht : IsOpen t) (hd : Disjoint s t) :
theorem Disjoint.frontier_right {X : Type u} [TopologicalSpace X] {s t : Set X} (hs : IsOpen s) (hd : Disjoint s t) :