Interior, closure and frontier of a set #
This file provides lemmas relating to the functions interior
, closure
and frontier
of a set
endowed with a topology.
Notation #
𝓝 x
: the filternhds x
of neighborhoods of a pointx
;𝓟 s
: the principal filter of a sets
;𝓝[s] x
: the filternhdsWithin x s
of neighborhoods of a pointx
within a sets
;𝓝[≠] x
: the filternhdsWithin x {x}ᶜ
of punctured neighborhoods ofx
.
Tags #
interior, closure, frontier
Alias of the reverse direction of closure_nonempty_iff
.
Alias of the forward direction of closure_nonempty_iff
.
Alias of the forward direction of dense_iff_closure_eq
.
The closure of a set s
is dense if and only if s
is dense.
Alias of the reverse direction of dense_closure
.
The closure of a set s
is dense if and only if s
is dense.
Alias of the forward direction of dense_closure
.
The closure of a set s
is dense if and only if s
is dense.
Alias of the forward direction of dense_iff_inter_open
.
A set is dense if and only if it has a nonempty intersection with each nonempty open set.
Interior and frontier are disjoint.
Alias of the reverse direction of frontier_subset_iff_isClosed
.
The complement of a set has the same frontier as the original set.
The frontier of a set is closed.
The frontier of a closed set has no interior point.