The empty subarray.
Equations
- Subarray.empty = { array := #[], start := 0, stop := 0, start_le_stop := Subarray.empty.proof_1, stop_le_array_size := Subarray.empty.proof_1 }
Instances For
Equations
- Subarray.instEmptyCollection = { emptyCollection := Subarray.empty }
Equations
- Subarray.instInhabited = { default := ∅ }
@[inline]
unsafe def
Subarray.forInUnsafe
{α : Type u}
{β : Type v}
{m : Type v → Type w}
[Monad m]
(s : Subarray α)
(b : β)
(f : α → β → m (ForInStep β))
:
m β
Equations
- s.forInUnsafe b f = Subarray.forInUnsafe.loop s f (USize.ofNat s.stop) (USize.ofNat s.start) b
Instances For
Equations
- Subarray.instForIn = { forIn := fun {β : Type ?u.20} [Monad m] => Subarray.forIn }
@[inline]
def
Subarray.foldlM
{α : Type u}
{β : Type v}
{m : Type v → Type w}
[Monad m]
(f : β → α → m β)
(init : β)
(as : Subarray α)
:
m β
Equations
- Subarray.foldlM f init as = Array.foldlM f init as.array as.start as.stop
Instances For
@[inline]
def
Subarray.foldrM
{α : Type u}
{β : Type v}
{m : Type v → Type w}
[Monad m]
(f : α → β → m β)
(init : β)
(as : Subarray α)
:
m β
Equations
- Subarray.foldrM f init as = Array.foldrM f init as.array as.stop as.start
Instances For
@[inline]
def
Subarray.anyM
{α : Type u}
{m : Type → Type w}
[Monad m]
(p : α → m Bool)
(as : Subarray α)
:
m Bool
Equations
- Subarray.anyM p as = Array.anyM p as.array as.start as.stop
Instances For
@[inline]
def
Subarray.allM
{α : Type u}
{m : Type → Type w}
[Monad m]
(p : α → m Bool)
(as : Subarray α)
:
m Bool
Equations
- Subarray.allM p as = Array.allM p as.array as.start as.stop
Instances For
@[inline]
def
Subarray.forM
{α : Type u}
{m : Type v → Type w}
[Monad m]
(f : α → m PUnit)
(as : Subarray α)
:
m PUnit
Equations
- Subarray.forM f as = Array.forM f as.array as.start as.stop
Instances For
@[inline]
def
Subarray.forRevM
{α : Type u}
{m : Type v → Type w}
[Monad m]
(f : α → m PUnit)
(as : Subarray α)
:
m PUnit
Equations
- Subarray.forRevM f as = Array.forRevM f as.array as.stop as.start
Instances For
@[specialize #[]]
def
Subarray.findSomeRevM?.find
{α : Type u}
{β : Type v}
{m : Type v → Type w}
[Monad m]
(as : Subarray α)
(f : α → m (Option β))
(i : Nat)
:
Equations
- Subarray.findSomeRevM?.find as f 0 x_2 = pure none
- Subarray.findSomeRevM?.find as f i.succ h = do let r ← f as[i] match r with | some val => pure r | none => let_fun this := ⋯; Subarray.findSomeRevM?.find as f i this
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Array.instCoeSubarray = { coe := Array.ofSubarray }
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- instAppendSubarray = { append := fun (x y : Subarray α) => let a := x.toArray ++ y.toArray; a.toSubarray }
Equations
- instReprSubarray = { reprPrec := fun (s : Subarray α) (x : Nat) => repr s.toArray ++ Std.Format.text ".toSubarray" }
Equations
- instToStringSubarray = { toString := fun (s : Subarray α) => toString s.toArray }