Documentation
Init
.
Data
.
Nat
.
Div
.
Lemmas
Search
return to top
source
Imports
Init.Omega
Init.Data.Nat.Lemmas
Imported by
Nat
.
lt_div_iff_mul_lt
Nat
.
div_le_iff_le_mul
Nat
.
div_eq_iff
Nat
.
lt_of_div_eq_zero
Nat
.
div_eq_zero_iff_lt
Nat
.
div_mul_self_eq_mod_sub_self
Nat
.
mul_div_self_eq_mod_sub_self
Nat
.
lt_div_mul_self
Further lemmas about
Nat.div
and
Nat.mod
, with the convenience of having
omega
available.
#
source
theorem
Nat
.
lt_div_iff_mul_lt
{k x y :
Nat
}
(h :
0
<
k
)
:
x
<
y
/
k
↔
x
*
k
<
y
-
(
k
-
1
)
source
theorem
Nat
.
div_le_iff_le_mul
{k x y :
Nat
}
(h :
0
<
k
)
:
x
/
k
≤
y
↔
x
≤
y
*
k
+
k
-
1
source
theorem
Nat
.
div_eq_iff
{k x y :
Nat
}
(h :
0
<
k
)
:
x
/
k
=
y
↔
x
≤
y
*
k
+
k
-
1
∧
y
*
k
≤
x
source
theorem
Nat
.
lt_of_div_eq_zero
{k x :
Nat
}
(h :
0
<
k
)
(h' :
x
/
k
=
0
)
:
x
<
k
source
theorem
Nat
.
div_eq_zero_iff_lt
{k x :
Nat
}
(h :
0
<
k
)
:
x
/
k
=
0
↔
x
<
k
source
theorem
Nat
.
div_mul_self_eq_mod_sub_self
{x k :
Nat
}
:
x
/
k
*
k
=
x
-
x
%
k
source
theorem
Nat
.
mul_div_self_eq_mod_sub_self
{x k :
Nat
}
:
k
*
(
x
/
k
)
=
x
-
x
%
k
source
theorem
Nat
.
lt_div_mul_self
{k x :
Nat
}
(h :
0
<
k
)
(w :
k
≤
x
)
:
x
-
k
<
x
/
k
*
k