List-like type to avoid extra level of indirection
- nil {α : Type u} {β : Type v} : Lean.AssocList α β
- cons {α : Type u} {β : Type v} (key : α) (value : β) (tail : Lean.AssocList α β) : Lean.AssocList α β
Instances For
instance
Lean.instInhabitedAssocList
{a✝ : Type u_1}
{a✝¹ : Type u_2}
:
Inhabited (Lean.AssocList a✝ a✝¹)
Equations
- Lean.instInhabitedAssocList = { default := Lean.AssocList.nil }
@[reducible, inline]
Equations
Instances For
Equations
- Lean.AssocList.instEmptyCollection = { emptyCollection := Lean.AssocList.empty }
@[reducible, inline]
abbrev
Lean.AssocList.insert
{α : Type u}
{β : Type v}
(m : Lean.AssocList α β)
(k : α)
(v : β)
:
Lean.AssocList α β
Equations
- m.insert k v = Lean.AssocList.cons k v m
Instances For
Equations
- Lean.AssocList.nil.isEmpty = true
- x✝.isEmpty = false
Instances For
@[specialize #[]]
def
Lean.AssocList.foldlM
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
(f : δ → α → β → m δ)
(init : δ)
:
Lean.AssocList α β → m δ
Equations
- Lean.AssocList.foldlM f x✝ Lean.AssocList.nil = pure x✝
- Lean.AssocList.foldlM f x✝ (Lean.AssocList.cons a b es) = do let d ← f x✝ a b Lean.AssocList.foldlM f d es
Instances For
@[inline]
def
Lean.AssocList.foldl
{α : Type u}
{β : Type v}
{δ : Type w}
(f : δ → α → β → δ)
(init : δ)
(as : Lean.AssocList α β)
:
δ
Equations
- Lean.AssocList.foldl f init as = (Lean.AssocList.foldlM f init as).run
Instances For
Equations
- as.toList = (Lean.AssocList.foldl (fun (r : List (α × β)) (a : α) (b : β) => (a, b) :: r) [] as).reverse
Instances For
@[specialize #[]]
def
Lean.AssocList.forM
{α : Type u}
{β : Type v}
{m : Type w → Type w}
[Monad m]
(f : α → β → m PUnit)
:
Lean.AssocList α β → m PUnit
Equations
- Lean.AssocList.forM f Lean.AssocList.nil = pure PUnit.unit
- Lean.AssocList.forM f (Lean.AssocList.cons a b es) = do f a b Lean.AssocList.forM f es
Instances For
def
Lean.AssocList.mapKey
{α : Type u}
{β : Type v}
{δ : Type w}
(f : α → δ)
:
Lean.AssocList α β → Lean.AssocList δ β
Equations
- Lean.AssocList.mapKey f Lean.AssocList.nil = Lean.AssocList.nil
- Lean.AssocList.mapKey f (Lean.AssocList.cons a b es) = Lean.AssocList.cons (f a) b (Lean.AssocList.mapKey f es)
Instances For
def
Lean.AssocList.mapVal
{α : Type u}
{β : Type v}
{δ : Type w}
(f : β → δ)
:
Lean.AssocList α β → Lean.AssocList α δ
Equations
- Lean.AssocList.mapVal f Lean.AssocList.nil = Lean.AssocList.nil
- Lean.AssocList.mapVal f (Lean.AssocList.cons a b es) = Lean.AssocList.cons a (f b) (Lean.AssocList.mapVal f es)
Instances For
def
Lean.AssocList.findEntry?
{α : Type u}
{β : Type v}
[BEq α]
(a : α)
:
Lean.AssocList α β → Option (α × β)
Equations
- Lean.AssocList.findEntry? a Lean.AssocList.nil = none
- Lean.AssocList.findEntry? a (Lean.AssocList.cons a_1 b es) = match a_1 == a with | true => some (a_1, b) | false => Lean.AssocList.findEntry? a es
Instances For
Equations
- Lean.AssocList.find? a Lean.AssocList.nil = none
- Lean.AssocList.find? a (Lean.AssocList.cons a_1 b es) = match a_1 == a with | true => some b | false => Lean.AssocList.find? a es
Instances For
Equations
- Lean.AssocList.contains a Lean.AssocList.nil = false
- Lean.AssocList.contains a (Lean.AssocList.cons a_1 b es) = (a_1 == a || Lean.AssocList.contains a es)
Instances For
def
Lean.AssocList.replace
{α : Type u}
{β : Type v}
[BEq α]
(a : α)
(b : β)
:
Lean.AssocList α β → Lean.AssocList α β
Equations
- Lean.AssocList.replace a b Lean.AssocList.nil = Lean.AssocList.nil
- Lean.AssocList.replace a b (Lean.AssocList.cons a_1 b_1 es) = match a_1 == a with | true => Lean.AssocList.cons a b es | false => Lean.AssocList.cons a_1 b_1 (Lean.AssocList.replace a b es)
Instances For
def
Lean.AssocList.erase
{α : Type u}
{β : Type v}
[BEq α]
(a : α)
:
Lean.AssocList α β → Lean.AssocList α β
Equations
- Lean.AssocList.erase a Lean.AssocList.nil = Lean.AssocList.nil
- Lean.AssocList.erase a (Lean.AssocList.cons a_1 b es) = match a_1 == a with | true => es | false => Lean.AssocList.cons a_1 b (Lean.AssocList.erase a es)
Instances For
Equations
- Lean.AssocList.any p Lean.AssocList.nil = false
- Lean.AssocList.any p (Lean.AssocList.cons a b es) = (p a b || Lean.AssocList.any p es)
Instances For
Equations
- Lean.AssocList.all p Lean.AssocList.nil = true
- Lean.AssocList.all p (Lean.AssocList.cons a b es) = (p a b && Lean.AssocList.all p es)
Instances For
@[inline]
def
Lean.AssocList.forIn
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w'}
[Monad m]
(as : Lean.AssocList α β)
(init : δ)
(f : α × β → δ → m (ForInStep δ))
:
m δ
Equations
- as.forIn init f = Lean.AssocList.forIn.loop f init as
Instances For
@[specialize #[]]
def
Lean.AssocList.forIn.loop
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w'}
[Monad m]
(f : α × β → δ → m (ForInStep δ))
:
δ → Lean.AssocList α β → m δ
Equations
- One or more equations did not get rendered due to their size.
- Lean.AssocList.forIn.loop f x✝ Lean.AssocList.nil = pure x✝
Instances For
instance
Lean.AssocList.instForInProd
{α : Type u}
{β : Type v}
{m : Type w → Type w}
:
ForIn m (Lean.AssocList α β) (α × β)
Equations
- Lean.AssocList.instForInProd = { forIn := fun {β_1 : Type ?u.25} [Monad m] => Lean.AssocList.forIn }
Equations
- [].toAssocList' = Lean.AssocList.nil
- ((a, b) :: es).toAssocList' = Lean.AssocList.cons a b es.toAssocList'