Cauchy's Functional Equation #
This file contains the classical results about the Cauchy's functional equation
f (x + y) = f x + f y
for functions f : ℝ → ℝ
. In this file, we prove that the solutions to this
equation are linear up to the case when f
is a Lebesgue measurable functions, while also deducing
intermediate well-known variants.
theorem
isLinearMap_iff_apply_eq_apply_one_mul
{M : Type}
[CommSemiring M]
(f : M →+ M)
:
IsLinearMap M ⇑f ↔ ∀ (x : M), f x = f 1 * x
theorem
additive_isBounded_of_isBounded_on_interval
{s : Set ℝ}
{a : ℝ}
(f : ℝ →+ ℝ)
(hs : s ∈ nhds a)
(h : Bornology.IsBounded (⇑f '' s))
:
∃ V ∈ nhds 0, Bornology.IsBounded (⇑f '' V)
theorem
AddMonoidHom.continuousAt_iff_continuousAt_zero
{a : ℝ}
(f : ℝ →+ ℝ)
:
ContinuousAt (⇑f) a ↔ ContinuousAt (⇑f) 0
theorem
isLinearMap_real_of_isBounded_nhds
{s : Set ℝ}
{a : ℝ}
(f : ℝ →+ ℝ)
(hs : s ∈ nhds a)
(hf : Bornology.IsBounded (⇑f '' s))
:
IsLinearMap ℝ ⇑f
theorem
MonotoneOn.isLinearMap_real
{s : Set ℝ}
{a : ℝ}
(f : ℝ →+ ℝ)
(hs : s ∈ nhds a)
(hf : MonotoneOn (⇑f) s)
:
IsLinearMap ℝ ⇑f