Documentation

LeanCamCombi.CauchyFunctionalEquation

Cauchy's Functional Equation #

This file contains the classical results about the Cauchy's functional equation f (x + y) = f x + f y for functions f : ℝ → ℝ. In this file, we prove that the solutions to this equation are linear up to the case when f is a Lebesgue measurable functions, while also deducing intermediate well-known variants.

theorem isLinearMap_iff_apply_eq_apply_one_mul {M : Type} [CommSemiring M] (f : M →+ M) :
IsLinearMap M f ∀ (x : M), f x = f 1 * x
theorem is_linear_rat (f : →+ ) (q : ) :
f q = f 1 * q
theorem additive_isBounded_of_isBounded_on_interval {s : Set } {a : } (f : →+ ) (hs : s nhds a) (h : Bornology.IsBounded (f '' s)) :
Vnhds 0, Bornology.IsBounded (f '' V)
theorem isLinearMap_real_of_isBounded_nhds {s : Set } {a : } (f : →+ ) (hs : s nhds a) (hf : Bornology.IsBounded (f '' s)) :
theorem MonotoneOn.isLinearMap_real {s : Set } {a : } (f : →+ ) (hs : s nhds a) (hf : MonotoneOn (⇑f) s) :