Documentation

LeanCamCombi.ErdosRenyi.Basic

The Erdős–Rényi model #

In this file, we define the Erdős–Rényi model through its marginals.

@[reducible, inline]
abbrev ErdosRenyi {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] (G : ΩSimpleGraph α) (p : NNReal) (μ : MeasureTheory.Measure Ω := by volume_tac) :

A sequence iid. real valued Bernoulli random variables with parameter p ≤ 1.

Equations
Instances For
    theorem ErdosRenyi.le_one {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) :
    p 1
    theorem ErdosRenyi.iIndepFun {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) :
    ProbabilityTheory.iIndepFun inferInstance (fun (e : Sym2 α) (ω : Ω) => e (G ω).edgeSet) μ
    theorem ErdosRenyi.map {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) (e : Sym2 α) :
    MeasureTheory.Measure.map (fun (ω : Ω) => e (G ω).edgeSet) μ = (PMF.bernoulli' p ).toMeasure
    theorem ErdosRenyi.aemeasurable {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) (e : Sym2 α) :
    AEMeasurable (fun (ω : Ω) => e (G ω).edgeSet) μ
    theorem ErdosRenyi.nullMeasurableSet {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) (e : Sym2 α) :
    MeasureTheory.NullMeasurableSet {ω : Ω | e (G ω).edgeSet} μ
    theorem ErdosRenyi.identDistrib {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) (d e : Sym2 α) :
    ProbabilityTheory.IdentDistrib (fun (ω : Ω) => d (G ω).edgeSet) (fun (ω : Ω) => e (G ω).edgeSet) μ μ
    theorem ErdosRenyi.meas_edge {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) (e : Sym2 α) :
    μ {ω : Ω | e (G ω).edgeSet} = p
    theorem ErdosRenyi.meas {α : Type u_1} {Ω : Type u_2} [MeasurableSpace Ω] {G : ΩSimpleGraph α} {H : SimpleGraph α} {p : NNReal} (μ : MeasureTheory.Measure Ω) (hG : ErdosRenyi G p μ) [MeasureTheory.IsProbabilityMeasure μ] [Fintype α] [DecidableEq α] [DecidableRel H.Adj] :
    μ {ω : Ω | G ω = H} = p ^ H.edgeFinset.card * (1 - p) ^ (Fintype.card (Sym2 α) - H.edgeFinset.card)