Documentation
LeanCamCombi
.
GrowthInGroups
.
Lecture2
Search
return to top
source
Imports
Init
LeanCamCombi.Mathlib.Combinatorics.Additive.ApproximateSubgroup
Mathlib.Algebra.Order.Group.Pointwise.Interval
Imported by
GrowthInGroups
.
Lecture2
.
lemma_2_2
GrowthInGroups
.
Lecture2
.
lemma_2_3_2
GrowthInGroups
.
Lecture2
.
lemma_2_3_1
GrowthInGroups
.
Lecture2
.
lemma_2_4_1
GrowthInGroups
.
Lecture2
.
lemma_2_4_2
GrowthInGroups
.
Lecture2
.
def_2_5
GrowthInGroups
.
Lecture2
.
remark_2_6_1
GrowthInGroups
.
Lecture2
.
remark_2_6_2
GrowthInGroups
.
Lecture2
.
remark_2_6_3
GrowthInGroups
.
Lecture2
.
lemma_2_7
GrowthInGroups
.
Lecture2
.
lemma_2_8
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_2
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
(
U
V
W
:
Finset
G
)
:
U
.
card
*
(
V
⁻¹
*
W
).
card
≤
(
U
*
V
).
card
*
(
U
*
W
).
card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_3_2
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{
A
:
Finset
G
}
{
K
:
ℝ
}
(
hA
:
↑
(
A
^
2
).
card
≤
K
*
↑
A
.
card
)
:
↑
(
A
⁻¹
*
A
).
card
≤
K
^
2
*
↑
A
.
card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_3_1
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{
A
:
Finset
G
}
{
K
:
ℝ
}
(
hA
:
↑
(
A
^
2
).
card
≤
K
*
↑
A
.
card
)
:
↑
(
A
*
A
⁻¹
).
card
≤
K
^
2
*
↑
A
.
card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_4_1
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{
A
:
Finset
G
}
{
K
:
ℝ
}
{
m
:
ℕ
}
(
hm
:
3
≤
m
)
(
hA
:
↑
(
A
^
3
).
card
≤
K
*
↑
A
.
card
)
(
ε
:
Fin
m
→
ℤ
)
(
hε
:
∀ (
i
:
Fin
m
),
|
ε
i
|
=
1
)
:
↑
(
List.map
(fun (
i
:
Fin
m
) =>
A
^
ε
i
)
(
List.finRange
m
)
)
.
prod
.
card
≤
K
^
(
3
*
(
m
-
2
))
*
↑
A
.
card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_4_2
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{
A
:
Finset
G
}
{
K
:
ℝ
}
{
m
:
ℕ
}
(
hm
:
3
≤
m
)
(
hA
:
↑
(
A
^
3
).
card
≤
K
*
↑
A
.
card
)
(
hAsymm
:
A
⁻¹
=
A
)
:
↑
(
A
^
m
).
card
≤
K
^
(
m
-
2
)
*
↑
A
.
card
source
def
GrowthInGroups
.
Lecture2
.
def_2_5
{
G
:
Type
u_1}
[
Group
G
]
(
S
:
Set
G
)
(
K
:
ℝ
)
:
Prop
Equations
GrowthInGroups.Lecture2.def_2_5
S
K
=
IsApproximateSubgroup
K
S
Instances For
source
theorem
GrowthInGroups
.
Lecture2
.
remark_2_6_1
(
k
:
ℕ
)
:
IsApproximateAddSubgroup
2
(
Set.Icc
(
-
↑
k
)
↑
k
)
source
theorem
GrowthInGroups
.
Lecture2
.
remark_2_6_2
{
ι
:
Type
u_2}
[
Fintype
ι
]
(
k
:
ι
→
ℕ
)
:
IsApproximateAddSubgroup
(
2
^
Fintype.card
ι
)
(
Set.univ
.
pi
fun (
i
:
ι
) =>
Set.Icc
(
-
↑
(
k
i
)
)
↑
(
k
i
)
)
source
theorem
GrowthInGroups
.
Lecture2
.
remark_2_6_3
:
IsApproximateAddSubgroup
2
(
Set.Icc
(-
1
)
1
)
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_7
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{
K
:
ℝ
}
{
A
:
Finset
G
}
(
hA₁
:
1
∈
A
)
(
hsymm
:
A
⁻¹
=
A
)
(
hA
:
↑
(
A
^
3
).
card
≤
K
*
↑
A
.
card
)
:
IsApproximateSubgroup
(
K
^
3
) (
↑
A
^
2
)
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_2_8
{
G
:
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{
K
:
ℝ
}
{
A
B
:
Finset
G
}
(
hB
:
B
.
Nonempty
)
(
hK
:
↑
(
A
*
B
).
card
≤
K
*
↑
B
.
card
)
:
∃
F
⊆
A
,
↑
F
.
card
≤
K
∧
A
⊆
F
*
(
B
/
B
)