Documentation

LeanCamCombi.GrowthInGroups.Lecture2

theorem GrowthInGroups.Lecture2.lemma_4_2 {G : Type u_1} [DecidableEq G] [Group G] (U V W : Finset G) :
U.card * (V⁻¹ * W).card (U * V).card * (U * W).card
theorem GrowthInGroups.Lecture2.lemma_4_3_2 {G : Type u_1} [DecidableEq G] [Group G] {A : Finset G} {K : } (hA : (A ^ 2).card K * A.card) :
(A⁻¹ * A).card K ^ 2 * A.card
theorem GrowthInGroups.Lecture2.lemma_4_3_1 {G : Type u_1} [DecidableEq G] [Group G] {A : Finset G} {K : } (hA : (A ^ 2).card K * A.card) :
(A * A⁻¹).card K ^ 2 * A.card
theorem GrowthInGroups.Lecture2.lemma_4_4_1 {G : Type u_1} [DecidableEq G] [Group G] {A : Finset G} {K : } {m : } (hm : 3 m) (hA : (A ^ 3).card K * A.card) (ε : Fin m) (hε : ∀ (i : Fin m), |ε i| = 1) :
(List.map (fun (i : Fin m) => A ^ ε i) (List.finRange m)).prod.card K ^ (3 * (m - 2)) * A.card
theorem GrowthInGroups.Lecture2.lemma_4_4_2 {G : Type u_1} [DecidableEq G] [Group G] {A : Finset G} {K : } {m : } (hm : 3 m) (hA : (A ^ 3).card K * A.card) (hAsymm : A⁻¹ = A) :
(A ^ m).card K ^ (m - 2) * A.card
theorem GrowthInGroups.Lecture2.remark_4_6_2 {ι : Type u_2} [Fintype ι] (k : ι) :
IsApproximateAddSubgroup (2 ^ Fintype.card ι) (Set.univ.pi fun (i : ι) => Set.Icc (-(k i)) (k i))
theorem GrowthInGroups.Lecture2.lemma_4_7 {G : Type u_1} [DecidableEq G] [Group G] {K : } {A : Finset G} (hA₁ : 1 A) (hsymm : A⁻¹ = A) (hA : (A ^ 3).card K * A.card) :
IsApproximateSubgroup (K ^ 3) (A ^ 2)
theorem GrowthInGroups.Lecture2.lemma_4_8 {G : Type u_1} [DecidableEq G] [Group G] {K : } {A B : Finset G} (hB : B.Nonempty) (hK : (A * B).card K * B.card) :
FA, F.card K A F * (B / B)