Documentation
LeanCamCombi
.
GrowthInGroups
.
Lecture2
Search
Google site search
return to top
source
Imports
Init
LeanCamCombi.GrowthInGroups.ApproximateSubgroup
LeanCamCombi.Mathlib.Data.Set.Pointwise.Interval
Imported by
GrowthInGroups
.
Lecture2
.
lemma_4_2
GrowthInGroups
.
Lecture2
.
lemma_4_3_2
GrowthInGroups
.
Lecture2
.
lemma_4_3_1
GrowthInGroups
.
Lecture2
.
lemma_4_4_1
GrowthInGroups
.
Lecture2
.
lemma_4_4_2
GrowthInGroups
.
Lecture2
.
def_4_5
GrowthInGroups
.
Lecture2
.
remark_4_6_1
GrowthInGroups
.
Lecture2
.
remark_4_6_2
GrowthInGroups
.
Lecture2
.
remark_4_6_3
GrowthInGroups
.
Lecture2
.
lemma_4_7
GrowthInGroups
.
Lecture2
.
lemma_4_8
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_2
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
(U V W :
Finset
G
)
:
U
.card
*
(
V
⁻¹
*
W
)
.card
≤
(
U
*
V
)
.card
*
(
U
*
W
)
.card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_3_2
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{A :
Finset
G
}
{K :
ℝ
}
(hA :
↑
(
A
^
2
)
.card
≤
K
*
↑
A
.card
)
:
↑
(
A
⁻¹
*
A
)
.card
≤
K
^
2
*
↑
A
.card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_3_1
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{A :
Finset
G
}
{K :
ℝ
}
(hA :
↑
(
A
^
2
)
.card
≤
K
*
↑
A
.card
)
:
↑
(
A
*
A
⁻¹
)
.card
≤
K
^
2
*
↑
A
.card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_4_1
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{A :
Finset
G
}
{K :
ℝ
}
{m :
ℕ
}
(hm :
3
≤
m
)
(hA :
↑
(
A
^
3
)
.card
≤
K
*
↑
A
.card
)
(ε :
Fin
m
→
ℤ
)
(hε :
∀ (
i
:
Fin
m
),
|
ε
i
|
=
1
)
:
↑
(
List.map
(fun (
i
:
Fin
m
) =>
A
^
ε
i
)
(
List.finRange
m
)
)
.prod
.card
≤
K
^
(
3
*
(
m
-
2
)
)
*
↑
A
.card
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_4_2
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{A :
Finset
G
}
{K :
ℝ
}
{m :
ℕ
}
(hm :
3
≤
m
)
(hA :
↑
(
A
^
3
)
.card
≤
K
*
↑
A
.card
)
(hAsymm :
A
⁻¹
=
A
)
:
↑
(
A
^
m
)
.card
≤
K
^
(
m
-
2
)
*
↑
A
.card
source
def
GrowthInGroups
.
Lecture2
.
def_4_5
{G :
Type
u_1}
[
Group
G
]
(S :
Set
G
)
(K :
ℝ
)
:
Prop
Equations
GrowthInGroups.Lecture2.def_4_5
S
K
=
IsApproximateSubgroup
K
S
Instances For
source
theorem
GrowthInGroups
.
Lecture2
.
remark_4_6_1
(k :
ℕ
)
:
IsApproximateAddSubgroup
2
(
Set.Icc
(
-
↑
k
)
↑
k
)
source
theorem
GrowthInGroups
.
Lecture2
.
remark_4_6_2
{ι :
Type
u_2}
[
Fintype
ι
]
(k :
ι
→
ℕ
)
:
IsApproximateAddSubgroup
(
2
^
Fintype.card
ι
)
(
Set.univ
.pi
fun (
i
:
ι
) =>
Set.Icc
(
-
↑
(
k
i
)
)
↑
(
k
i
)
)
source
theorem
GrowthInGroups
.
Lecture2
.
remark_4_6_3
:
IsApproximateAddSubgroup
2
(
Set.Icc
(-
1
)
1
)
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_7
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{K :
ℝ
}
{A :
Finset
G
}
(hA₁ :
1
∈
A
)
(hsymm :
A
⁻¹
=
A
)
(hA :
↑
(
A
^
3
)
.card
≤
K
*
↑
A
.card
)
:
IsApproximateSubgroup
(
K
^
3
)
(
↑
A
^
2
)
source
theorem
GrowthInGroups
.
Lecture2
.
lemma_4_8
{G :
Type
u_1}
[
DecidableEq
G
]
[
Group
G
]
{K :
ℝ
}
{A B :
Finset
G
}
(hB :
B
.Nonempty
)
(hK :
↑
(
A
*
B
)
.card
≤
K
*
↑
B
.card
)
:
∃
F
⊆
A
,
↑
F
.card
≤
K
∧
A
⊆
F
*
B
/
B