def
SimpleGraph.degOn
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(G : SimpleGraph α)
[DecidableRel G.Adj]
(s : Finset α)
(a : α)
:
Number of vertices of s
adjacent to a
.
Instances For
theorem
SimpleGraph.degOn_mono
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(G : SimpleGraph α)
[DecidableRel G.Adj]
{s t : Finset α}
(hst : s ⊆ t)
(a : α)
:
G.degOn s a ≤ G.degOn t a
@[simp]
theorem
SimpleGraph.degOn_empty
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(G : SimpleGraph α)
[DecidableRel G.Adj]
(a : α)
:
@[simp]
theorem
SimpleGraph.degOn_univ
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(G : SimpleGraph α)
[DecidableRel G.Adj]
(a : α)
:
G.degOn Finset.univ a = G.degree a
theorem
SimpleGraph.degOn_union
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(G : SimpleGraph α)
[DecidableRel G.Adj]
{s t : Finset α}
(h : Disjoint s t)
(a : α)
:
theorem
SimpleGraph.sum_degOn_comm
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(G : SimpleGraph α)
[DecidableRel G.Adj]
(s t : Finset α)
:
∑ a ∈ s, G.degOn t a = ∑ a ∈ t, G.degOn s a