Documentation

LeanCamCombi.Mathlib.Combinatorics.SimpleGraph.Finite

def SimpleGraph.degOn {α : Type u_1} [Fintype α] [DecidableEq α] (G : SimpleGraph α) [DecidableRel G.Adj] (s : Finset α) (a : α) :

Number of vertices of s adjacent to a.

Equations
  • G.degOn s a = (s G.neighborFinset a).card
Instances For
    theorem SimpleGraph.degOn_mono {α : Type u_1} [Fintype α] [DecidableEq α] (G : SimpleGraph α) [DecidableRel G.Adj] {s t : Finset α} (hst : s t) (a : α) :
    G.degOn s a G.degOn t a
    @[simp]
    theorem SimpleGraph.degOn_empty {α : Type u_1} [Fintype α] [DecidableEq α] (G : SimpleGraph α) [DecidableRel G.Adj] (a : α) :
    G.degOn a = 0
    @[simp]
    theorem SimpleGraph.degOn_univ {α : Type u_1} [Fintype α] [DecidableEq α] (G : SimpleGraph α) [DecidableRel G.Adj] (a : α) :
    G.degOn Finset.univ a = G.degree a
    theorem SimpleGraph.degOn_union {α : Type u_1} [Fintype α] [DecidableEq α] (G : SimpleGraph α) [DecidableRel G.Adj] {s t : Finset α} (h : Disjoint s t) (a : α) :
    G.degOn (s t) a = G.degOn s a + G.degOn t a
    theorem SimpleGraph.sum_degOn_comm {α : Type u_1} [Fintype α] [DecidableEq α] (G : SimpleGraph α) [DecidableRel G.Adj] (s t : Finset α) :
    as, G.degOn t a = at, G.degOn s a