Documentation

LeanCamCombi.Mathlib.Combinatorics.SimpleGraph.Multipartite

def Finpartition.multipartiteGraph {α : Type u_1} [Fintype α] [DecidableEq α] (P : Finpartition Finset.univ) :
Equations
  • P.multipartiteGraph = { Adj := fun (a b : α) => ∀ ⦃s : Finset α⦄, s P.partsa sbs, symm := , loopless := }
Instances For
    @[simp]
    theorem Finpartition.multipartiteGraph_adj {α : Type u_1} [Fintype α] [DecidableEq α] (P : Finpartition Finset.univ) (a b : α) :
    P.multipartiteGraph.Adj a b = ∀ ⦃s : Finset α⦄, s P.partsa sbs
    instance Finpartition.instDecidableRelAdjMultipartiteGraph {α : Type u_1} [Fintype α] [DecidableEq α] {P : Finpartition Finset.univ} :
    DecidableRel P.multipartiteGraph.Adj
    Equations
    theorem Finpartition.multipartiteGraph_adj_of_mem_parts {α : Type u_1} [Fintype α] [DecidableEq α] {P : Finpartition Finset.univ} {s t : Finset α} {a b : α} (hs : s P.parts) (ht : t P.parts) (ha : a s) (hb : b t) :
    P.multipartiteGraph.Adj a b s t

    If v and w are in distinct parts then they are adjacent.