def
Finpartition.multipartiteGraph
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(P : Finpartition Finset.univ)
:
Equations
Instances For
@[simp]
theorem
Finpartition.multipartiteGraph_adj
{α : Type u_1}
[Fintype α]
[DecidableEq α]
(P : Finpartition Finset.univ)
(a b : α)
:
instance
Finpartition.instDecidableRelAdjMultipartiteGraph
{α : Type u_1}
[Fintype α]
[DecidableEq α]
{P : Finpartition Finset.univ}
:
DecidableRel P.multipartiteGraph.Adj
Equations
- Finpartition.instDecidableRelAdjMultipartiteGraph x✝ x = Finset.decidableDforallFinset
theorem
Finpartition.multipartiteGraph_adj_of_mem_parts
{α : Type u_1}
[Fintype α]
[DecidableEq α]
{P : Finpartition Finset.univ}
{s t : Finset α}
{a b : α}
(hs : s ∈ P.parts)
(ht : t ∈ P.parts)
(ha : a ∈ s)
(hb : b ∈ t)
:
If v and w are in distinct parts then they are adjacent.