Documentation
LeanCamCombi
.
Mathlib
.
Data
.
Prod
.
Lex
Search
Google site search
return to top
source
Imports
Init
Mathlib.Tactic.Common
Mathlib.Data.Prod.Lex
Imported by
Prod
.
Lex
.
lt_iff'
Prod
.
Lex
.
lt_iff''
Prod
.
Lex
.
instWellFoundedLT
source
theorem
Prod
.
Lex
.
lt_iff'
{α :
Type
u_1}
{β :
Type
u_2}
[
PartialOrder
α
]
[
Preorder
β
]
(x y :
α
×
β
)
:
toLex
x
<
toLex
y
↔
x
.1
≤
y
.1
∧
(
x
.1
=
y
.1
→
x
.2
<
y
.2
)
source
theorem
Prod
.
Lex
.
lt_iff''
{α :
Type
u_3}
{β :
Type
u_4}
[
PartialOrder
α
]
[
Preorder
β
]
(a b :
Lex
(
α
×
β
)
)
:
a
<
b
↔
(
ofLex
a
)
.1
≤
(
ofLex
b
)
.1
∧
(
(
ofLex
a
)
.1
=
(
ofLex
b
)
.1
→
(
ofLex
a
)
.2
<
(
ofLex
b
)
.2
)
source
instance
Prod
.
Lex
.
instWellFoundedLT
{α :
Type
u_1}
{β :
Type
u_2}
[
PartialOrder
α
]
[
Preorder
β
]
[
WellFoundedLT
α
]
[
WellFoundedLT
β
]
:
WellFoundedLT
(
Lex
(
α
×
β
)
)
Equations
⋯
=
⋯