Documentation

LeanCamCombi.Mathlib.Data.Prod.Lex

theorem Prod.Lex.lt_iff' {α : Type u_1} {β : Type u_2} [PartialOrder α] [Preorder β] (x y : α × β) :
toLex x < toLex y x.1 y.1 (x.1 = y.1x.2 < y.2)
theorem Prod.Lex.lt_iff'' {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] (a b : Lex (α × β)) :
a < b (ofLex a).1 (ofLex b).1 ((ofLex a).1 = (ofLex b).1(ofLex a).2 < (ofLex b).2)
instance Prod.Lex.instWellFoundedLT {α : Type u_1} {β : Type u_2} [PartialOrder α] [Preorder β] [WellFoundedLT α] [WellFoundedLT β] :
WellFoundedLT (Lex (α × β))